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The GW approximation has become a method of choice for predicting quasiparticle properties in solids and
large molecular systems, owing to its favorable accuracy-cost balance. However, its accuracy is the result of a
fortuitous cancellation of vertex corrections in the polarizability and self-energy. Hence, when attempting to
go beyond GW through inclusion of vertex corrections, the accuracy can deteriorate if this delicate balance
is disrupted. In this work, we explore an alternative route that theoretically goes beyond GW : the parquet
formalism. Unlike approaches that focus on a single correlation channel, such as the electron-hole channel in
GW or the particle-particle channel in T -matrix theory, parquet theory treats all two-body scattering channels
on an equal footing. We present the formal structure of the parquet equations, which couple the one-body
Green’s function, the self-energy, and the two-body vertex. We discuss the approximations necessary to solve
this set of equations, the advantages and limitations of this approach, outline its implementation for molecular
systems, and assess its accuracy for principal ionization potentials of small molecular systems.

I. INTRODUCTION

The success of the GW approximation1 is largely at-
tributed to its favorable balance between computational
cost and accuracy.2–5 With modern implementations
scaling as O(K3) or O(K4) using various algorithmic
techniques,6–18 where K is the size of the one-body basis
set, GW has become the method of choice for predict-
ing band structures in solids and ionization potentials
(IPs) in large molecular systems.19–40 This accuracy is
now understood to arise from a fortunate cancellation of
errors.41

Hedin’s equations offer a formal framework to go be-
yond GW through the systematic inclusion of vertex cor-
rections in the polarizability and the self-energy.41–58 In
principle, these vertex corrections should improve the ac-
curacy of quasiparticle properties, particularly in regimes
where GW is known to struggle. However, in practice,
such refinements are often delicate: they may destroy the
beneficial error cancellation intrinsic to GW , sometimes
worsening results rather than improving them.41,57–59

Despite its practical success, GW remains limited in sys-
tems with strong correlation, where its assumptions break
down.60–68

In light of these limitations, this work explores an al-
ternative strategy: the parquet formalism.69,70 Unlike
Hedin’s equations and the GW approximation, which
emphasize the electron-hole (eh) correlation channel, or
the particle-particle (pp) T -matrix approximation,71–75

which focuses on the pp correlation channel, the parquet
approach seeks to treat all two-body correlation channels
on an equal footing. Previous works have shown that
the relative importance of these channels in finite molec-
ular systems is not obvious, motivating a more balanced
treatment.76–78 While several attempts have been made
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to combine multiple channels in an ad hoc manner,48,79–82

these approaches often lack formal foundations. By con-
trast, the parquet formalism provides a rigorous frame-
work for such a treatment by classifying diagrammatic
contributions into three correlation channels.

Parquet theory consists of a set of coupled equations
that interrelate the one-body Green’s function, the self-
energy, and the two-body vertex function. Specifically,
the parquet equations combine three core ingredients: the
Dyson-Schwinger equation, the Bethe-Salpeter equation
in each of the three correlation channels, and the parquet
decomposition of the vertex function, which classifies the
two-body diagrams into irreducible and three distinct
types of reducible diagrams (see below). This structure
enables the self-consistent determination of both one-
and two-body quantities if the two-body fully irreducible
vertex is known or suitably approximated. In practice, the
so-called parquet approximation is defined by replacing
the fully irreducible vertex with the antisymmetrized bare
Coulomb interaction.

The parquet formalism was originally introduced in
the 1960s by de Dominicis and Martin,69,70 and later re-
visited by Bickers and co-workers in the context of the
fluctuation-exchange (FLEX) approximation.83–88 This
latter combines contributions from every two-body cor-
relation channel (without double counting) to construct
the self-energy, and can be viewed as a non-self-consistent
variant of the parquet approximation. More recently, the
parquet formalism has attracted renewed interest in the
condensed matter community (see also Ref. 89 for an
application in nuclear physics), particularly due to ad-
vances in algorithmic developments that have enabled
its application to strongly correlated systems such as
the Hubbard model at larger interaction strengths.90–94

Nonetheless, even with modern computational resources,
applying the parquet formalism to larger Hubbard lat-
tices remains challenging due to its significant memory
requirements, prompting the development of dedicated
numerical schemes.95–98

A central advantage of the parquet approach is that it
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respects the essential many-body symmetries. Crossing
symmetry, ensuring that exchange between different cor-
relation channels is properly accounted for, is preserved
by construction. The parquet scheme also satisfies the
Pauli exclusion principle, unlike, for example, the GW ap-
proximation, which is known to suffer from self-screening
errors.47,99–101 By contrast, the GW approximation, and,
more generally, Baym-Kadanoff conserving schemes,71,102

are designed to enforce conservation laws for one-body
quantities such as particle number and energy. The par-
quet formalism sacrifices some conservation properties
but gains a systematic, self-consistent treatment of two-
particle scattering processes.

In summary, the parquet formalism offers a promis-
ing, albeit computationally demanding, route to go be-
yond GW in a controlled and symmetric manner. It is
particularly well-suited to cases where different types of
correlation are intertwined and cannot be captured by
a single correlation channel. To the best of our knowl-
edge, the parquet formalism has not yet been applied
in the context of quantum chemistry. The goal of this
work is to begin exploring this possibility. The remain-
der of this manuscript is organized as follows. Section II
introduces the concept of diagrammatic one- and two-
body reducibility, which sets the stage for the parquet
equations presented in Sec. III. In Sec. IV, we provide
the corresponding expressions in frequency space and a
spin-orbital basis, while Sec. V discusses the associated
algorithm in detail. Computational details and numeri-
cal results are reported in Secs. VI and VII, respectively.
Finally, conclusions are drawn in Sec. VIII.

II. ONE- AND TWO-BODY REDUCIBILITY

A. One-body reducibility

The time-ordered one-body Green’s function, also
known as one-body propagator, is defined as

G(11′) = (−i) 〈ΨN
0 |T̂

[
ψ̂(1)ψ̂†(1′)

]
|ΨN

0 〉 , (1)

where |ΨN
0 〉 is the exact N -electron ground state wave

function. The time-ordering operator T̂ acts as

T̂
[
ψ̂(1)ψ̂†(1′)

]
= Θ(t1 − t1′)ψ̂(1)ψ̂

†(1′)

−Θ(t1′ − t1)ψ̂
†(1′)ψ̂(1),

(2)

where Θ(t) is the Heaviside step function, while ψ̂(1)

and ψ̂†(1′) represent second-quantized annihilation and
creation field operators in the Heisenberg picture.103 Here,
1 is a space-spin-time composite variable (1) = (x1, t1) =
(r1, σ1, t1).

The one-body propagator can be computed analytically
if the Hamiltonian is restricted to its one-body part and
is referred to as the independent-particle propagator G0.
Hence, it is natural to compute G perturbatively and to

Σ̃= +

FIG. 1. Diagrammatic representation of the full one-body
vertex, as defined in Eq. (3).

decompose it as

G(11′) = G0(11
′) +G0(12)Σ̃(22

′)G0(2
′1′), (3)

in terms of the full one-body vertex Σ̃. Note that the
integration over repeated composite indices is assumed
throughout this manuscript. This equation is represented
diagrammatically in Fig. 1, where the single- and double-
line arrows represent G0 and G, respectively.104

Hence, G0 corresponds to the zeroth-order term of the
expansion while Σ̃ admits a perturbation expansion in
terms of the Coulomb interaction. The first terms of
this expansion are represented diagrammatically in Fig. 2,
where the Coulomb interaction is drawn as a dashed
line.103 The expression corresponding to the first two
terms on the right-hand side is

Σ(1) = −iv(12; 1′2′)G(2′2+) + iv(12; 2′1′)G(2′2+), (4)

where

v(12; 1′2′) = δ(11′)
δ(t1 − t2)

|r1 − r2|
δ(12), (5)

and 2+ means that a positive infinitesimal shift has been
added to the associated time variable. They are of first
order in the Coulomb interaction. Among the second-
order diagrams, the two on the bottom line resemble
first-order diagrams glued together with a propagator.
Diagrammatically, they are said to be one-body reducible,
i.e., they can be separated into two parts by cutting one
propagator line. On the other hand, the two remaining
second-order diagrams do not fulfil this condition and are
said to be irreducible. This classification can be pursued
for higher-order diagrams, and the number of irreducible
diagrams becomes exponentially smaller than the number
of reducible ones with increasing order.

Hence, it is natural to try to only compute some selected
irreducible diagrams and generate the corresponding re-
ducible diagrams in some systematic way. The Dyson

Σ̃ = + + +

+ + + . . .

FIG. 2. Perturbation expansion of the full one-body vertex Σ̃.
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Σ= +

FIG. 3. Diagrammatic representation of the Dyson equation,
as defined in Eq. (6)

equation

G(11′) = G0(11
′) +G0(12)Σ(22

′)G(2′1′), (6)

which expresses G in terms of the irreducible one-body
vertex Σ (also known as the self-energy), which contains
every irreducible diagram of Σ̃, does exactly this. It is
represented in Fig. 3.

The Dyson equation also incorporates every reducible
diagram. This becomes more evident by injecting the
expression of G into the right-hand side to produce the
following perturbation expansion

G(11′) = G0(11
′) +G0(12)Σ(22

′)G0(2
′1′)

+G0(12)Σ(23)G0(33
′)Σ(3′2′)G0(2

′1′) + · · · . (7)

Indeed, for a given approximation of Σ, the Dyson equa-
tion generates an infinite number of reducible diagrams
during the computation of G. For example, if G is com-
puted through the Dyson equation with Σ = Σ(1) +Σ(2)

where

Σ(2) = v(12; 3′2′)G(3′3)G(4′2)G(2′4)v(34; 1′4′)

− v(12; 3′2′)G(3′3)G(4′2)G(2′4)v(34; 4′1′)
(8)

represents the two second-order irreducible diagrams of
Fig. 2, then the resulting one-body Green’s function is
exact up to second order. This is because the Dyson
equation automatically generates the missing reducible
second-order contributions, together with an infinite num-
ber of reducible terms of arbitrary order. Physically, the
self-energy Σ represents all possible interactions experi-
enced by a propagating particle. This non-local potential
encompasses Hartree (H), exchange (x), and correlation
(c) effects.

B. Two-body reducibility

The time-ordered two-body Green’s function is defined
as

G2(12; 1
′2′) = (−i)2 〈ΨN

0 |T̂ [ψ̂(1)ψ̂(2)ψ̂†(2′)ψ̂†(1′)]|ΨN
0 〉 .

(9)
The full two-body vertex F can be defined similarly to
the one-body vertex [see Eq. (3)] through its relationship
with the two-body propagator G2

G2(12; 34) = G(13)G(24)−G(14)G(23)

−G(11′)G(3′3)F (1′2′; 3′4′)G(4′4)G(22′). (10)

G2 = − + F

FIG. 4. Diagrammatic representation of the full two-body
vertex, as defined in Eq. (10).

This equation can be represented diagrammatically as in
Fig. 4. Note that in this case, there are two possibilities
for the independent-particle propagation. Using the sym-
metries of G2, one can show that the full two-body vertex
fulfils the following relation88

F (12; 34) = −F (21; 34) = −F (12; 43) = F (21; 43), (11)

known as crossing symmetries.
The contributions to the full two-body vertex can be

classified as either reducible or irreducible diagrams. In
analogy with the one-body case, it is desirable to leverage
the power of Dyson equations to generate reducible dia-
grams starting from irreducible blocks. However, a key
distinction arises compared to the case of Σ̃: a two-body
diagram can be reducible in multiple ways. Figure 5 illus-
trates the three topologically distinct ways of partitioning
a diagram into two parts by cutting two propagator lines,
referred to as eh, transversal electron-hole (eh), and pp.

Using arguments based on the conservation of particle
number, it can be shown that a diagram can be reducible
only in one of these three channels. Hence, the full two-
body vertex admits the following decomposition88

F (12; 34) = Λ(12; 34) + Φeh(12; 34)

+ Φeh(12; 34) + Φpp(12; 34), (12)

in terms of the fully irreducible two-body vertex Λ and
the three different reducible two-body vertices Φeh, Φeh,
and Φpp. This decomposition can be written alternatively

1 4

3 2

A B

1 4

2 3

A B

3 2

1 4

A

B

FIG. 5. The three different types of two-particle reducibility
lead to three topologically distinct ways of partitioning a
diagram into two parts by cutting two propagator lines: eh
(top left), eh (right), and pp (bottom left).
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as
F (12; 34) = Γeh(12; 34) + Φeh(12; 34)

= Γeh(12; 34) + Φeh(12; 34)

= Γpp(12; 34) + Φpp(12; 34),

(13)

where the “irreducible in one channel only” vertices Γeh,
Γeh, and Γpp have been introduced. A vertex that is
irreducible in one channel is either fully irreducible or
reducible in another channel. Hence, one can deduce the
following relationships

Γeh(12; 34) = Λ(12; 34) + Φeh(12; 34) + Φpp(12; 34),
(14a)

Γeh(12; 34) = Λ(12; 34) + Φeh(12; 34) + Φpp(12; 34),
(14b)

Γpp(12; 34) = Λ(12; 34) + Φeh(12; 34) + Φeh(12; 34).
(14c)

The next step is to generate reducible diagrams us-
ing the irreducible blocks as in the Dyson equation [see
Eq. (6)]. This can be done through three different Bethe-
Salpeter equations (BSE) for the full two-body vertex

F = Γeh + Γeh F

F = Γeh +

Γeh

F

F = Γpp + Γpp F

FIG. 6. Diagrammatic representation of the three Bethe-
Salpeter equations for the full two-body vertex, as defined in
Eq. (15): eh (top), eh (center), and pp (bottom).

F (12; 34) = Γeh(12; 34)

+ Γeh(13′; 31′)G(1′4′)G(2′3′)F (4′2; 2′4),
(15a)

F (12; 34) = Γeh(12; 34)

− Γeh(3′2; 32′)G(1′3′)G(2′4′)F (14′; 1′4),
(15b)

F (12; 34) = Γpp(12; 34)

− 1

2
Γpp(12; 1′2′)G(1′3′)G(2′4′)F (3′4′; 34).

(15c)

These three equations are represented diagrammatically
in Fig. 6. One can immediately see that, by construction,
the rightmost terms are reducible in a given channel.

Before ending this section, the crossing symmetries
of the irreducible vertices are reported. The irreducible
vertex in the pp channel fulfils the same symmetries as F
[see Eq. (11)].88 On the other hand, Γeh and Γeh are not
crossing symmetric on their own and are related through
the following relations88

Γeh(21; 34) = −Γeh(12; 34), (16a)

Γeh(12; 43) = −Γeh(12; 34). (16b)

III. PARQUET EQUATIONS

The one- and two-body vertices can be linked through
the equation of motion for G, which yields an expression
for the self-energy in terms of G2

103

Σ(11′) = −iv(12; 3′2′)G2(3
′2′; 32)G−1(31′). (17)

Substituting Eq. (10) into this expression leads to

Σ(11′) = ΣHx(11
′)

− iv(12; 3′2′)G(3′3)G(4′2)G(2′4)F (34; 4′1′), (18)

where ΣHx is the Hartree-Fock (HF) self energy, i.e., the
first-order self-energy of Eq. (4). The remaining term is
the desired expression of the correlation self-energy Σc in
terms of the full two-body vertex. This decomposition of
the self-energy is represented diagrammatically in Fig. 7.

The previous discussion laid the groundwork for the
self-consistent set of equations known as the parquet
equations

Σ = + + F

FIG. 7. Diagrammatic representation of the self-energy in
terms of the full two-body vertex, as defined in Eq. (18).
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G(11′) = G0(11
′) +G0(12)Σ(22

′)G(2′1′), (19a)
Σ(11′) = ΣHx(11

′)− iv(12; 3′2′)G(3′3)G(4′2)G(2′4)F (34; 4′1′), (19b)

F (12; 34) = Λ(12; 34) + Φeh(12; 34) + Φeh(12; 34) + Φpp(12; 34), (19c)
F (12; 34) = Γeh(12; 34) + Γeh(13′; 31′)G(1′4′)G(2′3′)F (4′2; 2′4), (19d)

F (12; 34) = Γeh(12; 34)− Γeh(3′2; 32′)G(1′3′)G(2′4′)F (14′; 1′4), (19e)

F (12; 34) = Γpp(12; 34)− 1

2
Γpp(12; 1′2′)G(1′3′)G(2′4′)F (3′4′; 34). (19f)

Within this set, every quantity can be determined
self-consistently except for the fully irreducible vertex
Λ, which must be provided as an input. The perturba-
tion expansion of Λ starts with two first-order terms —
the direct and exchange Coulomb interactions.88 A com-
mon approximation, known as the parquet approximation,
assumes

Λ(12; 1′2′) = −iv̄(12; 1′2′) = −i [v(12; 1′2′)− v(12; 2′1′)] .
(20)

This simplification is justified because the next terms
in the expansion of Λ only appear at fourth order in
the Coulomb interaction.88 Hence, the corresponding self-
energy contributions emerge at fifth order. Therefore,
solving the parquet equations self-consistently starting
from Eq. (20) ensures that the self-energy remains exact
up to fourth order.

Under the parquet approximation, the self-energy can
be written as

Σc(11
′) = Σ(2)(11′) + Σeh(11′) + Σpp(11′), (21)

where Σ(2)(11′) is the part due to the irreducible vertex
and is exactly the second-order correlation self-energy

Σ(2)(11′) = −1

2
v̄(12; 3′2′)G(3′3)G(4′2)G(2′4)v̄(34; 4′1′).

(22)
Using the crossing symmetry, the contribution from
Φeh(12; 34) and Φeh(12; 34) are gathered into

Σeh(11′) = −iv̄(12; 3′2′)G(3′3)G(4′2)G(2′4)Φeh(34; 4′1′),
(23)

while the contribution from the pp reducible kernel is

Σpp(11′) = − i

2
v̄(12; 3′2′)G(3′3)G(4′2)G(2′4)Φpp(34; 4′1′).

(24)
These self-energy expressions highlight that, in the

parquet formalism, the resummation in each channel is
carried out starting from third order. This is because the
three correlation channels (eh, eh, and pp) share common
diagrammatic contributions at second order, and the par-
quet formalism avoids double counting by construction.
As a result, the expressions for the eh and pp components
of the self-energy become more involved than in methods

like GW or the T -matrix, where the resummation typi-
cally starts at second order and is restricted to a single
channel.

Note that the eh reducible vertex does not have to be
considered because the self-energy can be expressed only
in terms of the eh and pp contributions, as shown above.
The eh and pp reducible vertices can be expressed in
closed form by expanding the corresponding BSEs and
identifying the reducible contributions, leading to

Φeh(12; 34) = Γeh(13′; 31′)L(1′2′; 3′4′)Γeh(4′2; 2′4),

(25a)

Φpp(12; 34) = −1

2
Γpp(12; 1′2′)K(1′2′; 3′4′)Γpp(3′4′; 34),

(25b)

where L and K are defined by the eh-BSE and pp-BSE
with kernels Γeh and Γpp, respectively

L(12; 1′2′) = L0(12; 1
′2′)

+ L0(13
′; 1′3)Γeh(34; 3′4′)L(4′2; 42′),

(26a)

K(12; 1′2′) = K0(12; 1
′2′)

− 1

2
K(12; 44′)Γpp(44′; 33′)K0(33

′; 1′2′),
(26b)

where L0(12; 1
′2′) = G(12′)G(21′) and

K0(12; 1
′2′) =

1

2
[G(11′)G(22′)−G(21′)G(12′)]. (27)

IV. PARQUET IN PRACTICE

The solution of the non-linear set of equations (19)
under the parquet approximation will now be discussed.
This requires, first, that the time-dependent equations are
expressed in frequency space and, then, that the spatial
variables are projected in a spin-orbital basis. A spin-
adapted version of these equations is also provided in the
Supplementary Material.

A. Parquet equations in frequency space

The parquet equations involve various 4-point quanti-
ties that depend on three time differences because of the
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time-independent nature of the Hamiltonian. Hence, the
frequency-space equations for the full two-body vertex
and the self-energies involve three-frequency quantities.
Note that there are various conventions possible for the
three time differences. The eh-BSE and pp-BSE each
have their natural convention. In the following, each
frequency-dependent quantity relies on the eh convention
by default, while the P subscript denotes quantities using
the pp convention. These conventions, their link, and
the Fourier transform of parquet equations are discussed
extensively in the Supplementary Material.

The three-frequency quantities are particularly chal-
lenging to deal with at zero temperature, where the sim-
plifications provided by Matsubara sums are no longer
available. To alleviate this, we first assume that the eh
and pp irreducible vertices are static, that is,

Γeh(x1x2;x3x4; ν, ν
′, ω) = Γeh(x1x2;x3x4;ω = 0),

(28a)
Γpp

P (x1x2;x3x4; ν, ν
′, ω) = Γpp

P (x1x2;x3x4;ω = 0),
(28b)

or, alternatively, one can say that the eh and pp irre-
ducible vertices are assumed to be instantaneous effective
interactions.

Hence, the reducible vertices [see Eqs. (25)] depend
only on their respective natural bosonic frequencies and
their expression are given by

Φeh(x1x2;x3x4;ω) = Γeh(x1x3′ ;x3x1′)

× L(x1′x2′ ;x3′x4′ ;ω)Γ
eh(x4′x2;x2′x4), (29)

and

Φpp
P (x1x2;x3x4;ω) = −1

2
Γpp

P (x1x2;x1′x2′)

×KP(x1′x2′ ;x3′x4′ ;ω)Γ
pp
P (x3′x4′ ;x3x4), (30)

where ω = 0 has been removed from the static kernels
for the sake of conciseness. This static kernel approxima-
tion leads to the following expressions for the eh and pp
components of the self-energy

Σeh(x1x1′ ;ω) = − i

(2π)2
v̄(x1x2;x3′x2′)

×
∫

d(ω1ω2)G(x3′x3;ω1)G(x4′x2;ω2)G(x2′x4;ω − ω1 + ω2)Φ
eh(x3x4;x4′x1′ ;ω2 − ω1),

(31a)

Σpp(x1x1′ ;ω) = − i

2(2π)2
v̄(x1x2;x3′x2′)

×
∫

d(ω1ω2)G(x3′x3;ω1)G(x4′x2;ω2)G(x2′x4;ω − ω1 + ω2)Φ
pp
P (x3x4;x4′x1′ ;ω2 + ω).

(31b)

While this approximation greatly simplifies the equations,
it is also quite severe and must therefore be carefully
evaluated in practice. Finally, although this may not yet
be apparent, the next section will make it clear that this
approximation is fully equivalent to the standard static
kernel approximation used in the eh-BSE and pp-BSE
formalisms.105,106

B. Projection in a spin-orbital basis

The aim of self-consistently solving the parquet equa-
tions is to determine the one-body propagator. Assuming
a quasiparticle representation, it has the following form
in a spin-orbital basis

Gpq(ω) =
∑
i

δpiδqi
ω − εi − iη

+
∑
a

δpaδqa
ω − εa + iη

, (32)

where εp are the quasiparticle energies and can be directly
linked to the ionization potentials and electron affinities
of the system, and η is a positive infinitesimal ensuring
the correct causal structure.

In this work, the indices p, q, r, s, . . . are used for arbi-
trary orbitals, i, j, k, l label the O occupied orbitals, and
a, b, c, d denote the V virtual orbitals. The indices n and
m are occupied-virtual and occupied-occupied/virtual-
virtual composite indices, respectively.

The quasiparticle energies can be obtained by solving
the Dyson equation [see Eq. (6)], which in a basis set,
takes the form of a frequency-dependent, non-Hermitian
mean-field problem, known as the quasiparticle equation

[F +Σc(ω = εp)]ψp(x) = εpψp(x), (33)

Here, F is the Fock matrix in the spin-orbital basis that
includes Hartree-exchange contributions, Σc(ω) is the
frequency-dependent correlation self-energy matrix, and
ψp(x) are the so-called Dyson orbitals. Hence, to deter-
mine the quasiparticle energies, one must first compute
Σc(ω). In the parquet framework, the self-energy is given
by Eq. (21), which requires prior computation of the eh
and pp reducible vertices. Sections IV B 1 and IV B 2
detail the evaluation of Φeh and Φpp in a spin-orbital
basis, followed by the final expression for the self-energy
in Sec. IV B 4.
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1. Electron-hole reducible vertex

To compute the eh reducible vertex [see Eq. (29)], one
must first obtain the corresponding eh propagator L. As
shown in the Supplementary Material, solving the eh-BSE
is equivalent to diagonalizing an effective Hamiltonian
matrix defined as(

Aeh Beh

−(Beh)† −(Aeh)†

)(
Xeh (Y eh)†

Y eh (Xeh)†

)
=(

Xeh (Y eh)†

Y eh (Xeh)†

)(
Ωeh 0

0 −Ωeh

)
, (34)

where the elements of the various blocks are
Aeh

ia,jb = (εa − εi)δabδij + iΓeh
ajib, (35a)

Beh
ia,bj = iΓeh

abij . (35b)

Here, Γeh
pqrs is a short notation for Γeh

pqrs(ω = 0). The
eigenvalues correspond to neutral excitation (and deexci-
tation) energies. This defines a propagator L from which
the eh reducible vertex can be built using Eq. (29), as
follows

Φeh
pqrs(ω) = −

∑
tuvw

(iΓeh
pvrt)Ltuvw(ω)(iΓ

eh
wqus), (36)

which, once the spectral function of L is substituted, reads

iΦeh
pqrs(ω) =

∑
n

[
M eh

pr,nM
eh,∗
sq,n

ω − (Ωeh
n − iη)

−
M eh,∗

rp,nM
eh
qs,n

ω − (−Ωeh
n + iη)

]
,

(37)
where the eh generalized screened integrals are

M eh
pq,n =

∑
ia

(iΓeh
paqi)X

eh
ia,n +

∑
ai

(iΓeh
piqa)Y

eh
ai,n. (38)

Note that we use the same notation as in the GW case,
as these can be viewed as generalized GW -type screened
integrals. The GW screened integrals are recovered in
the limit Γeh

pqrs = −i 〈pq|rs〉. Finally, the static limit of
the reducible kernel is

iΦeh
pqrs = −

∑
n

[
M eh

pr,nM
eh,∗
sq,n

Ωeh
n − iη

+
M eh,∗

rp,nM
eh
qs,n

Ωeh
n − iη

]
, (39)

where Φeh
pqrs is a short notation for Φeh

pqrs(ω = 0).

2. Particle-particle reducible vertex

Likewise, the evaluation of the pp reducible vertex
begins with the computation of the corresponding pp
propagator [see Eq. (30)]. As demonstrated in the Sup-
plementary Material, solving the pp-BSE is equivalent to
diagonalizing an effective Hamiltonian matrix defined as(

Cpp Bpp

−(Bpp)† −Dpp

)(
Xee Y hh

Y ee Xhh

)
=(

Xee Y hh

Y ee Xhh

)(
Ωee 0

0 −Ωhh

)
, (40)

where the elements of the various blocks are

Cpp
ab,cd = (εa + εb)δacδbd + iΓpp

abcd, (41a)
Bpp

ab,ij = +iΓpp
abij , (41b)

Dpp
ij,kl = −(εi + εj)δikδjl + iΓpp

ijkl. (41c)

Here, Γpp
pqrs is a short notation for (Γpp

P )pqrs(ω = 0). The
eigenvalue matrices Ωee and Ωhh correspond to double
electron affinities and double ionization potentials, respec-
tively. This defines a propagator K, with elements Kpqrs

in the antisymmetric basis, from which the pp reducible
vertex can be built using Eq. (30)

(Φpp
P )pqrs(ω) = −1

2

∑
t<u
v<w

(Γpp
pqtu

)Ktuvw(ω)(Γ
pp
vwrs)

= −
∑
t<u
v<w

(Γpp
pqtu)Ktuvw(ω)(Γ

pp
vwrs)

= +
∑
t<u
v<w

(iΓpp
pqtu)Ktuvw(ω)(iΓ

pp
vwrs),

(42)

which, once the spectral function of K is substituted,
reads

(iΦpp
P )pqrs(ω) =

∑
m

[
M ee

pq,mM
ee,∗
rs,m

ω − (Ωee
m − iη)

−
Mhh,∗

pq,mM
hh
rs,m

ω − (Ωhh
m + iη)

]
,

(43)
where the pp generalized screened integrals are

M ee
pq,m =

∑
a<b

(iΓpp
pqab)X

ee
ab,m +

∑
i<j

(iΓpp
pqij)Y

ee
ij,m, (44a)

Mhh
pq,m =

∑
i<j

(iΓpp
pqij)X

hh
ij,m +

∑
a<b

(iΓpp
pqab)Y

hh
ab,m. (44b)

As before, we have chosen to use the same notation as
in the pp T -matrix case, since the pp T -matrix screened
integrals are recovered in the limit Γpp

pqrs = −i 〈pq||rs〉.
Finally, the static limit of the reducible pp kernel is

iΦpp
pqrs =

∑
m

[
−
M ee

pq,mM
ee,∗
rs,m

Ωee
m − iη

+
Mhh,∗

pq,mM
hh
rs,m

Ωhh
m + iη

]
, (45)

where Φpp
pqrs is a short notation for (Φpp

P )pqrs(ω = 0).

3. Irreducible vertices

Sections IV B 1 and IV B 2 have shown that computing
the reducible kernels requires solving two BSEs. These two
eigenvalue problems depend on the eh and pp irreducible
kernels, which can be expressed as

Γeh(12; 34) = −iv̄(12; 34)− Φeh(12; 43) + Φpp(12; 34),
(46a)

Γpp(12; 34) = −iv̄(12; 34) + Φeh(12; 34)− Φeh(12; 43),
(46b)
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using the crossing symmetry of Γeh and the parquet ap-
proximation.

Once projected in a basis, the eh and pp irreducible
kernels read

iΓeh
pqrs = 〈pq||rs〉 − iΦeh

pqsr + iΦpp
pqrs, (47a)

iΓpp
pqrs = 〈pq||rs〉+ iΦeh

pqrs − iΦeh
pqsr. (47b)

4. Self-energy

Now that the expressions of the (ir)reducible vertices
have been derived and discussed, the last ingredients that
must be computed are the three components of the self-
energy defined in Eqs. (22), (23), and (24). The expression
of the second-order self-energy is well known107–118 and
reads

Σ(2)
pq (ω) =

1

2

∑
ija

〈pa||ji〉 〈ji||qa〉
ω − (εj + εi − εa + 3iη)

+
1

2

∑
iab

〈pi||ba〉 〈ba||qi〉
ω − (εa + εb − εi − 3iη)

.

(48)

The projection in a basis of the eh and pp components of
the self-energy yields

Σeh
pq(ω) = − i

(2π)2

∑
rst

〈pr||st〉
∫

d(ω1ω2)Gss(ω1)

×Grr(ω2)Gtt(ω − ω1 + ω2)Φ
eh
strq(ω2 − ω1),

(49a)

Σpp
pq (ω) = − i

2(2π)2

∑
rst

〈pr||st〉
∫

d(ω1ω2)Gss(ω1)

×Grr(ω2)Gtt(ω − ω1 + ω2)(Φ
pp
P )strq(ω2 + ω).

(49b)

The closed-form evaluation of these integrals is performed
in the Supplementary Material, and yields

Σeh
pq(ω) =

+
∑
ijan

〈pa||ij〉
εa − εi − Ωeh

n − iη

M eh
ia,nM

eh,∗
qj,n

ω − (εj − Ωeh
n + 2iη)

−
∑
ijan

〈pa||ij〉
εa − εi − Ωeh

n − iη

M eh
ia,nM

eh,∗
qj,n

ω − (εi + εj − εa + 3iη)

+
∑
ijan

〈pa||ij〉
εa − εi +Ωeh

n − 3iη

M eh,∗
ai,nM

eh
jq,n

ω − (εi + εj − εa + 3iη)

+
∑
ijan

〈pi||aj〉
εa − εi +Ωeh

n − 3iη

M eh
ai,nM

eh,∗
qj,n

ω − (εj − Ωeh
n + 2iη)

+
∑
iabn

〈pi||ab〉
εa − εi − Ωeh

n − iη

M eh,∗
ia,nM

eh
bq,n

ω − (εb +Ωeh
n − 2iη)

−
∑
iabn

〈pi||ab〉
εa − εi − Ωeh

n − iη

M eh,∗
ia,nM

eh
bq,n

ω − (εa + εb − εi − 3iη)

+
∑
iabn

〈pi||ab〉
εa − εi +Ωeh

n − 3iη

M eh
ai,nM

eh,∗
qb,n

ω − (εa + εb − εi − 3iη)

+
∑
iabn

〈pa||ib〉
εa − εi +Ωeh

n − 3iη

M eh,∗
ai,nM

eh
bq,n

ω − (εb +Ωeh
n − 2iη)

,

(50)

for the eh part and

Σpp
pq (ω) =

+
1

2

∑
ijam

〈pa||ij〉
Ωhh

m − εi − εj − iη

Mhh,∗
ij,mM

hh
aq,m

ω − (Ωhh
m − εa + 2iη)

− 1

2

∑
ijam

〈pa||ij〉
Ωhh

m − εi − εj − iη

Mhh,∗
ij,mM

hh
aq,m

ω − (εi + εj − εa + 3iη)

+
1

2

∑
ijam

〈pa||ij〉
Ωee

m − εi − εj − 3iη

M ee
ij,mM

ee,∗
aq,m

ω − (εi + εj − εa + 3iη)

+
1

2

∑
abcm

〈pa||bc〉
εb + εc − Ωhh

m − 3iη

Mhh,∗
bc,mM

hh
aq,m

ω − (Ωhh
m − εa + 2iη)

+
1

2

∑
iabm

〈pi||ab〉
εa + εb − Ωee

m − iη

M ee
ab,mM

ee,∗
iq,m

ω − (Ωee
m − εi − 2iη)

− 1

2

∑
iabm

〈pi||ab〉
εa + εb − Ωee

m − iη

M ee
ab,mM

ee,∗
iq,m

ω − (εa + εb − εi − 3iη)

+
1

2

∑
iabm

〈pi||ab〉
εa + εb − Ωhh

m − 3iη

Mhh,∗
ab,mM

hh
iq,m

ω − (εa + εb − εi − 3iη)

+
1

2

∑
ijkm

〈pi||jk〉
Ωee

m − εj − εk − 3iη

M ee
jk,mM

ee,∗
iq,m

ω − (Ωee
m − εi − 2iη)

,

(51)

for the pp part.
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V. ALGORITHM

Various equations have been introduced and derived
thus far. While it is clear that they are interdependent,
the optimal strategy for achieving self-consistency among
them is not obvious. This section aims to address this
question. Figure 8 presents a schematic pseudo-code
to guide the discussion. As previously mentioned, the
first step involves selecting an approximation for the fully
irreducible two-body vertex. As discussed above, the most
common choice is the antisymmetrized bare Coulomb
interaction. Next, all quantities that will be iteratively
updated must be initialized. The reducible vertices are
set to zero, and the “irreducible in one channel only”
vertices are initialized from the fully irreducible vertex.
In this work, the self-energy is always initialized as the HF
self-energy, although one could alternatively start from a
Kohn-Sham mean-field Hamiltonian, or even from GW
quasiparticle energies.

As shown above, the self-energy is expressed only in
terms of Φeh and Φpp. These reducible vertices are com-
puted using the “irreducible in one channel only” vertices,
which themselves depend on the Φ’s. This defines the two-
body self-consistent loop depicted in Fig. 8. The reducible
vertices also depend on the one-body Green’s function
(through the BSEs). On the other hand, G is determined
using the Dyson equation and depends on the vertex,
since the self-energy is calculated from F . This mutual
dependence introduces a second level of self-consistency,
referred to as one-body self-consistency.

The following list enumerates each step of the self-
consistent procedure employed to solve the parquet equa-
tions:

1. Select a starting point for the one-body energies εp
and electron repulsion integrals 〈pq|rs〉.

2. Initialize Φeh = Φpp = 0 and Γeh = Γpp = Λ.

3. Build the eh and pp effective Hamiltonians using
εp, Γeh and Γpp [see Eqs. (35) and (41)].

4. Diagonalize Heh and Hpp to obtain the corre-
sponding eigenvalues and eigenvectors [see Eqs. (34)
and (40)].

5. Compute the eh and pp generalized screened inte-
grals by contracting the eigenvectors with Γeh and
Γpp [see Eqs. (38) and (44)]

6. Evaluate the reducible vertices Φeh and Φpp in
the static limit using the generalized screened inte-
grals and the two-body eigenvalues [see Eqs. (39)
and (45)].

7. Update Γeh and Γpp using the new reducible vertices
[see Eqs. (47a) and (47b)].

8. Check for convergence of the reducible vertices: if
the change in Φeh and Φpp is smaller than the thresh-
old τ2b, proceed to the next step. Otherwise, return
to step 3.

9. Build the self-energy from the converged two-body
quantities [see Eqs. (48), (50), and (51)] and solve
the corresponding quasiparticle equation in the di-
agonal approximation.

10. Check for convergence of the one-body energies: if
the change in εp is below the threshold τ1b, the
procedure is complete. Otherwise, return to step 1.

In this algorithm, one-body self-consistency is moni-
tored at the level of the quasiparticle energies and the
Dyson equation is solved within the diagonal approxima-
tion (so only the diagonal elements of the self-energy are
required). This scheme, which we refer to as eigenvalue-
only parquet approximation (evPA), is fully analogous to
the evGW partially self-consistent scheme.21,34,119–124 It
is common in the GW framework to omit any one-body
self-consistency altogether, leading to the well-known one-
shot (os) G0W0 scheme.19,20,22,27,125–127 Its parquet ana-
logue is denoted osPA. On the other hand, in quasiparticle
self-consistent (qs) GW , both quasiparticle energies and
orbitals are updated self-consistently, while enforcing a
static and Hermitian self-energy.13,35,122,128–132 We refer
to the corresponding parquet analogue as qsPA. In con-
trast to osPA and evPA, qsPA requires the full self-energy
matrix, and convergence is assessed via the standard DIIS
commutator between the effective Fock and density ma-
trices. For further details on the ev and qs schemes, we
refer the reader to Ref. 5.

To conclude this section, we would like to comment on
the computational cost associated with this algorithm. If
the self-energy is evaluated analytically, the most expen-
sive step in the G0W0 algorithm is the diagonalization of
the eh-RPA problem, which scales as O(K6). For partially
self-consistent schemes, such as evGW or qsGW , the scal-
ing is formally the same but with a larger prefactor due
to the multiple iterations. Similarly, the computational
cost of the one-shot pp T -matrix algorithm (G0T

pp
0 ) is

dominated by the pp-RPA diagonalization, which also
scales as O(K6). Of course, the prefactor of the pp-RPA
is significantly larger than its eh counterpart as their scal-
ing with respect to the occupied and virtual orbitals are
O((O2 + V 2)3) = O(V 6) and O((2OV )3) = O(O3V 3),
respectively.

At each two-body iteration of the parquet formalism,
one must diagonalize the eh-BSE and pp-BSE effective
Hamiltonians defined in Eqs. (34) and (40). Each diag-
onalization entails an overall computational scaling of
O(K6). This results in a larger prefactor than methods
based on a single correlation channel, although the overall
formal scaling remains unchanged.

On the other hand, the computational cost associated
with the construction of the self-energy is larger in the
parquet case. As shown in Eqs. (50) and (51), each ele-
ment of the eh and pp self-energy contributions can be
computed in O(K5) operations. This results in an overall
O(K6) computational cost for the diagonal elements of
the self-energy, or O(K7) if all matrix elements are eval-
uated. However, by introducing suitable intermediates,
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Set level of approximation for Λ

Initialize one-body quantities
Σ and G

Initialize two-body quantities
F = Λ, Γeh = Λ and Γpp = Λ

Compute
Φeh = ΓehLΓeh

Φpp = ΓppKΓpp

Update
F = Λ+

∑
j Φj

F converged?
Update

Γi = F − Φi

Compute
Σ = vGGGF

Solve
G−1 = G−1

0 − Σ

G converged? Update G

End

No

two-body
self-consistency

Yes

No

one-body
self-consistency

Yes

FIG. 8. Schematic representation of the self-consistent algorithm used in this work to solve the parquet equations.

this O(K7) cost can be reduced to O(K6), provided one
is willing to invest O(K4) in memory storage. The expres-
sion of the self-energy in terms of these intermediates can
be found in the Supplementary Material. Hence, the for-
mal scaling of the parquet approximation, with the static
kernel approximation of Sec. IV A, is also O(K6), albeit
with a much larger prefactor than for GW . Of course, one
should mention that most practical GW implementations
scale as O(K4) by leveraging numerical integration of the
self-energy and employing techniques such as density fit-
ting. Adapting these algorithmic strategies to the parquet
framework is an important direction for future work.

VI. COMPUTATIONAL DETAILS

The parquet approximation, which was described in
detail above, has been implemented in an open-source, in-
house program, named quack.133 This implementation
was carried out in both spin and spatial orbitals, allowing
us to check the correctness of the spin-adaptation per-
formed in the Supplementary Material. For osPA and
evPA, quasiparticle energies are computed by directly
solving the non-linear, frequency-dependent quasiparticle
equation, without resorting to linearization.

The convergence of the two-body loop has been accel-

erated using the DIIS procedure applied to the tensor
elements of Φeh and Φpp. Additionally, it was found
that introducing damping prior to DIIS further enhances
convergence. This observation suggests that the current
implementation of DIIS may not be optimal for this set
of equations. For example, although Φeh and Φpp are
computed and stored in the present implementation, this
may not be strictly necessary. Alternatively, one could ex-
trapolate the screened integrals rather than the reducible
vertices. Further investigation is warranted to determine
whether such modifications could improve the robustness
and efficiency of the parquet solver.

Our study is limited to closed-shell neutral reference
systems, consistently employing a restricted formalism.
Throughout this work, HF orbitals and energies are sys-
tematically used as the starting point. For all calcula-
tions in this work, we employ the aug-cc-pVTZ basis
set. The molecular geometries are taken from the quest
database.78,134
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VII. RESULTS

A. The fluctuation-exchange approximation

The first step of this study is to investigate the parquet
approximation without any self-consistency. In this case,
the self-energy is equal to its second-order part augmented
by three resummations of diagrams corresponding to the
three two-body correlation channels without any coupling.
This approximation is known as FLEX in the literature
and is represented diagrammatically in Fig. 9. At the
first iteration, the reducible vertices are zero, so the BSE
problems reduce to their RPA counterparts. Consequently,
when only one of the three correlation channels is retained,
this scheme reduces to the GW , the pp T -matrix, or
the eh T -matrix approximation.67 (Strictly speaking, to
correctly recover the GW approximation based on the
direct eh-RPA problem, one should use only the direct
Coulomb term in the fully irreducible vertex Λ.) This
relation between known self-energy approximations and
the first iteration of the parquet approximation has been
used as a sanity check for our implementation.

The performance of the FLEX approximation is evalu-
ated on 8 principal IPs of the 10- and 14-electron series
of molecules. The corresponding results are reported in
Table I. Two variants of FLEX have been considered; they
are obtained by enforcing, or not, the Tamm-Dancoff ap-
proximation (TDA) in the eh and pp eigenvalue problems,
i.e., neglecting the coupling blocks in their respective
eigenvalue problems. For both variants, the value of η
was set to zero. The G0W0 and G0T

pp
0 (without TDA)

results are reported for comparison, as well as the full
configuration interaction (FCI) reference values extracted
from Ref. 78.

The mean absolute error (MAE) of the FLEX approx-
imations on this small test set is 1.13 eV and 0.66 eV

Σ = + + +

+ + + · · ·

+ + + · · ·

+ + + · · ·

FIG. 9. Diagrammatic representation of the FLEX self-energy.

without and with enforcing the TDA, respectively. These
results are definitely worse than those of the single-channel
G0W0 and G0T

pp
0 approximations. This error can be at-

tributed to the third class of diagrams that is resummed
in the FLEX approximation, namely the eh ladders [see
last line of Fig. 9]. It has been shown in the literature
that a self-energy based solely on this class of diagrams
performs poorly in molecular systems.67 Note that for the
full FLEX scheme, the error associated with the principal
IP of BF is a large outlier without any regularization and
has been removed from the statistics.

TABLE I. Principal IP of 8 small molecules in the aug-cc-
pVTZ basis set. The FLEX results have been obtained with
(FLEX TDA) or without (FLEX RPA) enforcing the TDA. The
corresponding renormalization factors (or spectral weights)
are reported in parentheses.

Molecule FCI FLEX RPA FLEX TDA G0W0 G0T
pp
0

Ne 21.46 20.04(0.83) 20.41(0.86) 21.43 21.08
HF 16.15 14.40(0.75) 14.85(0.79) 16.24 15.72
H2O 12.68 11.25(0.70) 11.54(0.76) 12.88 12.36
NH3 10.90 10.23(0.69) 10.22(0.75) 11.20 10.72
CH4 14.38 14.90(0.79) 14.37(0.83) 14.75 14.28
BF 11.15 11.62(0.73) 11.33 10.96
CO 13.93 15.24(0.58) 14.02(0.73) 14.78 14.32
N2 15.49 14.71(0.64) 14.93(0.72) 16.35 15.72
MSE -0.60 -0.52 0.35 -0.12
MAE 1.13 0.66 0.36 0.28

B. Two-body self-consistency

The previous results have highlighted the need to prop-
erly couple the two-body correlation channels if they are
considered simultaneously. This section will go beyond
the FLEX approximation by investigating the coupling of
channels induced by the two-body self-consistency. Note
that the one-body self-consistency is not considered at
this stage. The two-body self-consistency is performed
until the absolute change in Φeh and Φpp is smaller than
τ2b = 10−4. Then, the corresponding self-energy and one-
body energies are obtained (under the diagonal approx-
imation and with η = 0), and the algorithm is stopped
after this single one-body iteration. This scheme was
denoted as osPA in Sec. V.

The comparison of osPA with FLEX allows us to gauge
the impact of the two-body self-consistency. Unfortu-
nately, in practice, the implementation described in Sec. V
is hindered by two challenges. First, the self-consistent
update of the reducible vertices was found to diverge in
most cases. This can be prevented through regularization,
i.e., by using a finite value of η to compute Φeh and Φpp

[see Eqs. (39) and (45)]. In this work, the iη regularizer
has been replaced by a more effective energy-dependent
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regularizer132,135,136

i(Φeh)pqrs =−
∑
n

M eh
pr,nM

eh,∗
sq,n

Ωeh
n

(1− e−2s2b(Ω
eh
n )2)

−
∑
n

M eh,∗
rp,nM

eh,d
qs,n

Ωeh
n

(1− e−2s2b(Ω
eh
n )2),

(52a)

i(Φpp
P )pqrs =−

∑
m

M ee
pq,mM

ee,∗
rs,m

Ωee
m

(1− e−2s2b(Ω
ee
m)2)

+
∑
m

Mhh,∗
pq,mM

hh
rs,m

Ωhh
m

(1− e−2s2b(Ω
hh
m )2).

(52b)

Indeed, it was shown in Ref. 132, for example, that such
an energy-dependent regularization greatly improves the
convergence properties of the qsGW scheme with respect
to the energy-independent regularizer iη.

Similarly, in the context of the parquet approxima-
tion, regularization was found to be essential for achiev-
ing convergence. However, it does not resolve all issues.
In particular, we have observed that triplet instabilities
can arise in the eh-BSE eigenvalue problem during the
self-consistent cycle. This problem further plagues the
convergence but can be alleviated, or at least avoided, by
enforcing the TDA.

Figure 10 displays the principal IP for Ne and H2O
in the aug-cc-pVTZ basis set obtained after this first
one-body iteration as a function of the regularization pa-
rameter s2b. For s2b = 0, the reducible vertices vanish
due to complete regularization, and the parquet approx-
imation reduces to the FLEX approximation. The left
panel shows that in both cases, i.e., with or without TDA,
the results are improving when the flow parameter is in-
creased until a plateau is reached around s2b = 10. This
evidences the fact that the two-body correlation channels
are getting renormalized through their mutual coupling.
For the case of H2O, a similar behavior is observed for the
TDA results. However, we could not achieve convergence
for s2b > 1 without TDA, due to triplet instabilities in
the eh-BSE eigenvalue problem that arise after only a few
iterations.

Table II reports the MSE and MAE for the principal
IP of 8 small molecules in the aug-cc-pVTZ basis set
as a function of the two-body regularization parameter
s2b. This demonstrates the beneficial impact of two-
body self-consistency as the MAE is decreasing when s is
increasing. At s2b = 100, the largest value for which every
IPs could be converged while enforcing the TDA, the MAE
is 0.23 eV. This MAE is slightly better than the G0W0

and G0T
pp
0 ones (see Table I). However, one should keep

in mind that this test set is really small and only proper
statistics on a large test set will assess the performance of
osPA with respect to G0W0 and G0T

pp
0 . Interestingly, the

MSE of the multi-channel osPA (−0.04 eV) is in between
the MSEs of the single-channel G0W0 and G0T

pp
0 methods

(0.35 eV and −0.12 eV, respectively). The two-body self-
consistency also has an impact on the renormalization

factors (or spectral weights). For example, at s2b = 100,
every IP considered here has a well-defined quasiparticle
character with Z > 0.9. This is not the case at the FLEX
level, where most renormalization factors are in between
0.6 and 0.8.

TABLE II. Principal IP of 8 small molecules in the aug-cc-
pVTZ basis computed with osPA, enforcing the TDA, as a
function of the regularization parameter s2b. The correspond-
ing renormalization factors (or spectral weights) are reported
in parentheses.

s2b
Molecule 0.001 0.01 0.1 1 10 100
Ne 20.46 20.67 20.88 21.17 21.24 21.24(0.94)
HF 14.88 15.09 15.45 15.83 16.05 16.05(0.92)
H2O 11.56 11.68 12.02 12.37 12.66 12.67(0.92)
NH3 10.22 10.26 10.39 10.60 10.84 10.85(0.93)
CH4 14.36 14.29 14.09 14.03 14.11 14.11(0.93)
BF 11.61 11.53 11.17 10.62 10.68 10.70(0.95)
CO 14.02 14.00 13.95 14.02 14.21 14.22(0.93)
N2 14.94 15.00 15.28 15.72 15.94 15.94(0.94)
MSE -0.51 -0.45 -0.36 -0.22 -0.05 -0.04
MAE 0.65 0.56 0.37 0.30 0.23 0.23

C. Full self-consistency

Finally, the full self-consistency, i.e., at both the one-
and two-body levels, is investigated. The one-body self-
consistency has been implemented in two different ways.
First, it is performed in the diagonal approximation and
it is thus analogous to the evGW scheme, as discussed in
Sec. V. It is referred to as evPA. Once again, an energy-
dependent regularization has been employed to facilitate
convergence. For example, the third term in Eq. (50), for
a diagonal matrix element evaluated at ω = εp, has been
transformed into

∑
ijan

〈pa||ij〉
∆paij

(1−e−2s1b∆
2
paij )

M eh,∗
ai,nM

eh
jq,n

∆ain
(1−e−2s1b∆

2
ain),

(53)
where ∆paij = εp + εa − εi − εj and ∆ain = εa − εi +Ωn.

The equivalent of qsGW , denoted as qsPA, has also
been implemented. In this scheme, the frequency-
dependent self-energy is approximated by a static Her-
mitian self-energy and is diagonalized at each one-body
iteration to obtain the quasiparticle energies. The static
parquet self-energy that has been used in this study is
inspired by the qsGW self-energy of Ref. 132 and is re-
ported in the Supplementary Material. It also relies on
an energy-dependent regularization as in Eq. (53).

The 8 principal IPs of the small set considered so far
have been obtained with, and without, one-body self-
consistency. The corresponding results are given in Ta-
ble III. The one-body convergence threshold τ1b was set
to 10−4, while the two-body convergence threshold was
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FIG. 10. Principal IP of Ne and H2O in the aug-cc-pVTZ basis computed with osPA, with or without TDA, as a function of the
regularization parameter s2b. The FCI reference value and the FLEX values are reported for comparison.

still set to τ2b = 10−4. The two-body regularization pa-
rameter has been set to s2b = 50 based on the results of
the previous section. The impact of the one-body reg-
ularization parameter on evPA and qsPA has also been
investigated, and it was found that s1b = 50 is the largest
value ensuring convergence. Note that, for CO and N2,
s1b was decreased to 25 and 10, respectively, to reach
convergence at the evPA level.

Table III shows that the impact of one-body self-
consistency at the qsPA level is to decrease the IPs by
0.1 eV to 0.3 eV approximately. Unfortunately, the MSE
without one-body self-consistency was already negative,
so this leads to a slightly worse MAE, with respect to
osPA, of 0.26 eV. The effect of the evPA one-body self-
consistency is also to decrease IPs on average, yielding
a MAE of 0.35 eV. This set of results suggests that the
one-body self-consistency has only a minor impact on the
principal IPs compared to the two-body self-consistency.
However, some early tests reveal that this has a much
larger influence on the two-body excitations provided by
the eh- and pp-BSE.

TABLE III. Principal IP of 8 small molecules in the aug-
cc-pVTZ basis computed at various self-consistent schemes
within the parquet and GW approximations. In the parquet
approximation, the TDA is enforced and the regularization
factors are s1b = 50 and s2b = 50.

Molecule osPA evPA qsPA G0W0 evGW qsGW
Ne 21.28 21.01 21.28 21.43 21.25 21.59
HF 16.06 15.79 15.98 16.24 16.07 16.35
H2O 12.68 12.51 12.53 12.88 12.78 12.88
NH3 10.89 10.77 10.65 11.20 11.16 11.09
CH4 14.14 14.01 13.83 14.75 14.74 14.62
BF 10.71 10.66 10.56 11.33 11.35 11.17
CO 14.23 14.14 13.76 14.78 14.74 14.32
N2 15.96 16.11 15.44 16.35 16.27 15.91
MSE -0.02 -0.14 -0.26 0.35 0.28 0.23
MAE 0.22 0.35 0.26 0.36 0.35 0.23

VIII. CONCLUSION

In this work, we have presented the first implementation
and assessment of the parquet formalism for molecular
systems, focusing on principal IPs in 10- and 14-electron
molecules. Unlike single-channel approaches such as GW
or the pp T -matrix, the parquet framework treats all two-
body correlation channels on equal footing, preserving
crossing symmetry and Pauli exclusion principle. This
implementation relies on the common parquet approxi-
mation for the fully irreducible two-body vertex as well
as an additional static kernel approximation analogous to
the usual eh-BSE formalism.

Our results highlight both the opportunities and chal-
lenges of this approach. At the lowest level of self-
consistency, the FLEX approximation performs worse
than single-channel methods due to the poor behavior of
the eh-ladder diagrams. However, introducing two-body
self-consistency significantly improves the results: IPs are
brought to within 0.3 eV of FCI reference values, with
quasiparticle weights close to unity. This demonstrates
that a proper coupling of correlation channels is essential
and that their mutual renormalization plays a central role
in accuracy.

We also explored one-body self-consistency via two
schemes. In the evPA approach, the diagonal approxi-
mation of the self-energy is enforced, and only quasipar-
ticle energies are updated self-consistently. In the qsPA
scheme, the full self-energy matrix is computed, and both
quasiparticle energies and Dyson orbitals are determined
self-consistently using a static and Hermitian version of
the self-energy. Unlike two-body self-consistency, one-
body self-consistency has only a modest effect, which
does not seem to improve IPs. However, preliminary evi-
dence suggests it may be more consequential for two-body
excitations, a direction we leave for future work.

From a computational perspective, the parquet approx-
imation scales formally as O

(
K6

)
, with a larger prefactor

than GW due to the simultaneous treatment of multiple
correlation channels. Unlike GW , however, it delivers a
broader range of observables, providing access not only to
IPs and EAs, but also to neutral (optical) excitations as
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well as DIPs and DEAs. Convergence issues necessitated
the use of energy-dependent regularizer instead of the
usual imaginary shift, which proved crucial for stabilizing
the one- and two-body self-consistency.

Overall, this study shows that parquet theory offers
a promising route to go beyond GW in molecular sys-
tems. Its balanced treatment of correlation channels
makes it particularly appealing for situations where GW
is known to struggle, such as strongly correlated regimes
or cases where multiple scattering mechanisms compete.
At the same time, our findings underline the importance
of algorithmic advances to reduce computational cost
and improve convergence. Future work will focus on
extending the present implementation beyond the static
kernel approximation, exploring the impact of parquet self-
consistency on excitation spectra and total energies, inves-
tigating the properties (such as positive semi-definiteness)
of the parquet self-energy,137 and integrating modern
low-scaling strategies to broaden applicability.

SUPPLEMENTARY MATERIAL

See the Supplementary Material for detailed derivations
of all equations, their projection into the spin-orbital ba-
sis, and their spin-adaptation, complementing the results
presented in the main manuscript.
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