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This document contains the detailed derivations of the equations reported in the associated main manuscript, where
missing notations can be found. Section I presents the derivation of the particle-particle (pp) Bethe-Salpeter equation
(BSE) in a linear-response framework. This equation is then transformed to frequency space in Sec. II and projected
in a finite basis set in Sec. III. The derivation of various kernel approximations is performed in Sec. IV and the
corresponding static and dynamic matrix elements are reported in Secs. V and VI, respectively. The spin adaptation
of all these matrix elements is done in Sec. VII. Some additional results are given in Sec. VIIIL. Finally, the derivation
of the GW anomalous self-energies is performed in Appendix A by extending Hedin’s equations to the case of the
Gorkov propagator.
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I. PARTICLE-PARTICLE BETHE-SALPETER EQUATION

The pp-BSE is a Dyson equation for the pp propagator K. Its derivation in a linear-response formalism starts from
the following Schwinger relation [1]

0Gee(1'2; [U))
179/ -
K(12;1'2") = G2(12 12"y = —6Uhh(12) U:o, (1)
which can then be recast as
0G°(1'2") , 5(G*1)ee(33’) e
—_— =GBl ——r~———= G(3'2 2
UMM (12) Ueo (31°) sUP(12) U—o (32 (2)

using the definition of the inverse Gorkov propagator [1]. In the above equation and the following ones, integration
over repeated indices is assumed. In addition, the explicit U dependence is only written in Eq. (1) and is dropped
after for the sake of conciseness. The Gorkov-Dyson equation,

_ _ yhe(117) ¥hh(117) + Uee(11)
1 AN 1 AN
G (11 ) - CTYO (11 ) (Eee(lll) + Uhh(lll) Zeh(lll) ) (3)
can now be inserted into the Schwinger relation which yields
SUPR(33") §32°¢(33")
K(12;12) = — 1) =2 '2") — 1) ———= 2. 4
(121'2) = ~6BY) Frpios| OB~ GB) G| 632 (4
Using the following property
SUPR(12) 1
(WT(?A) = 5[6(13)5(24) —6(14)6(23)], (5)
the first term is identified as the pp non-interacting propagator
1
Ko(12;1'2") = 5[G(12’)G(21’) - G(11")G(22")). (6)
The last step to obtain a Dyson equation for K is to apply the derivative chain rule to the second term,
SGhe(44") 5xe¢(33) 5GP (44) §°¢(33)
K(12;1'2") = Ky (12;1'2") — 1 "2/

(12:102) = Kol12:12) = CBLICE2) | gy |, 56w (i |,y T 50 (12) |,,_y 56 (a0 |,
5Gee( 2] §%°¢(33) 5G6h(44’) 5%¢(33) ™
6Uhh(12) U—o 0G°(44") |, _, 5Uhh(12) _o OGN (44 | o |

where, out of the four terms, only one survives at U = 0, that is,
0Gee(44") 5%e¢(33")
K(12;1'2") = Ky(12;1'2) — 1 2.
( ’ ) O( ) ) G(S ) (5Uhh(12) U—o 5Gee(44/) U—o G(3 ) (8)

Finally, once K has been identified, the equation reads

K(12;1'2') = Ko(12;1'2') — K (12;44')2PP(44';33') K (33';1'2'), (9)
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FIG. 1. Diagrammatic representations of the pp-BSE [see Eq. (9)]. Note that Ko(33’;1'2") has been replaced by the product
G(31')G(3'2’) in the right-hand side of Eq. (9) using the antisymmetric nature of the kernel.

where the pp kernel

xee(33')
EPP(44';33) = =2 1
( 733 ) 5Gee(44/) Ueo ) ( 0)

has been introduced and K has been recovered by exploiting the antisymmetric nature of the kernel
EPP(44/;33") = —=PP(4'4;33") = —=PP(44';3'3) = =PP(4/4;3'3). (11)

This equation is represented diagrammatically in Fig. 1.

II. BETHE-SALPETER EQUATION IN FREQUENCY SPACE
A. Fourier transform

The aim of this first subsection is to Fourier transform the pp-BSE derived in Eq. (9). The pp propagator K depends
on four space-spin variables and, because the Hamiltonian is time-independent, on three time differences

K(12; 1/2/) = K(X1X2;X1'X2';7'1277'1/2',7'12,1/2/), (12)

with 7, =t; — t; and 7,5 = (Tsr + 7j;)/2. The triple Fourier transform is defined as
. . 1N iwTo+Hiw' T +iw” T . .
K(x1x9; X1 Xojw,w',w'") = /d(712T1/2'712,1’2') e v 12,12 [ (X1 Xo; X1/X2/; Ti2, T1/2/, T12,1/2/ ). (13)

In the following derivation, only the time variables and time integrals are explicitly written down. Using these notations,
the time dependence of the pp-BSE reads

K(Tu, T127, 7’12,1'2/) = K (7'127 T172/, 7’12,1/2')
- /d(t3t3't4t4/) K (712, Tuar, T12,447 ) ZPP (Tuar , Tagr, Taar 337 ) Ko (T3, Tror, T3z 1727)  (14)
and the Fourier transform of this equation is performed as follows
K(w,w',w") = Ko(w,w',w")
—/d(T12,1/2/)d(t3t3/t4t4/)eiw”m*l'z'K(M7'44/77'12,44/)Epp(7'44/,7'33/,7'44/,33')K0(7'33',w/,7’33/,1'2/)

= KO(Wa wlv OJI/)

iw'’ T —_ 1 —  —iwT — /
—/d(712,1/2/)d(t3t3't4t4')€ 12'1'2/K(W,744/,712,44’):”(744’,733’,744’,33/)<27r dw e Ko(w,w', T33/,172/)

1 P —_ _ —
= Ko(w,w',w") — o /d(712,1'2’)d(@)d(t3't4t4')ew T1202 K (w, Taar, T12,447 ) EPP (Taar , =0, Taar 337 ) Ko (@, w', 733 1/2/)

1 )
= Ko(w,w',w") - e /d(ﬁz,m/) d(@@) d(tartar) e 202 K (W, &, Ti2,40 ) EPP (—@, —@, Taar 33 ) Ko (@, 0, T3 127

(
= Ko(w,w',w")
1
L

/ d(712,12/) d(w@) d(t3rtyr) el (Tra,aar FTaat 59 475 12 (w0, @, T12,44/)ZPP (=@, —@, Taar 33/ ) Ko (@0, W', T35/ 1727)



1
= Ko(w,w' ") — @ /d(&)d}) K(w,@,w")ZPP(—0, —0, w" ) Ko(@,w,w").
7r

In practice, the pairs of particles are assumed to be created and annihilated instantaneously, i.e., to = tf =t1+n
and ty = t1+, where 7 is a positive infinitesimal. Hence, one is interested in the single-frequency pp propagator
K(w) = lim,_,o+ K(—=7n, —n,w). Under this assumption, the pp-BSE simplifies as

1
(2m)?

K(w") = Ko(w") - /d(@@) K(=n,0,w")EPP (-0, —0,w") Ko (@, —n,w"), (15)

where the 7 limit has not been written for the sake of conciseness.

B. Effective dynamic kernel

Unfortunately, because the kernel depends on three frequencies, the above equation cannot be inverted. Following
the methodology introduced for the usual electron-hole (eh) BSE case [2], an effective dynamic kernel is defined as

= 1 =0 -1 5 TPP (5 ” -1
Epp(w)=w/d(ww) (K ) (W) K (@, =1, w)ZPP (=0, =0, w) Ko (=1, 0, w) (K ) (@) (16)

such that the pp-BSE becomes
K(w) = Ko(w) — K (w)E"(w)Ko(w), (17)
and is now easily invertible, as follows
K~ w) = Ky H(w) + ZPP(w). (18)

However, as readily seen in Eq. (16), its kernel self-consistently depends on K. In order to suppress this dependency,
the effective kernel is approximated as

200(u) = o [ @) (K5 ) ) o @1, ) EP(~3, ) Ko1)o, (19)

where one simply replaces the kernel K by its independent-particle version K in Eq. (16).

C. Independent-particle propagator

To conclude this section, the frequency-space expression of the non-interacting pp propagator is derived below. Its
time dependence can be recast as

1 1
KO(X1X2;X1'X2’;71277'1/2’,712,1’2’) = gG(szl’;T21')G(X1X2'§T12') - gG(X1X1’;T11')G(X2X2';7'22')

—T12 — T1/2/
2
Ti2 — Ty
2

Ti2 + T
2
—Ti12 + T2y

2

= gG(szy; + 712,172 ) G (X1X2r; + Ti2,172/)

1
- §G(X1X1/; + 712,172/ ) G (X2Xor; + T12,102/),

which set the stage for the Fourier transform
N /AN iwTi2+Hiw 7r g Hiw' 7o 1197 . .
Ko(w,w',w") = [ d(miaTrrarTi2,1021) € 12 Ko (X1 X; X1/ Xor; Tia, T1rar, T12,102/)
1 iwT1o+iw 7475 Fiw’ T Io1
=3 d(Ti2Ti2T12,102/) € 12 1212

X (;/dwe_i(mzwy +T12’1/2/)&G(X2X1/§a))) (21/(1@6_1(712?/2/ +T12’1'2')MG(X1X2/;@))

™ ™



N =

/d(T127'1r2/7'12,1/2/)ei‘“m"’i“/ﬁ’y+i“’”712=1’2/
1 o (27T o - 1 (T2t "
x < doe™ (T 7420209 Q(x,x1/; @) o, | dwe T e 9 G (g )
T

T
1 ; (75} @ B /@ @ ; ’ (T
_ 2(2 )2 /d(d}d}) G(Xng;(:))G(XlXQ/;(D)/dTlgelle(w-i_E_E /dT1,2,6171/2/(w +E—E)/d7—12,1’2’617-12’1/2/(w —O—w)
m
1 ; o @ : e _® : "o~
_ 2(2 )2 d((:}@) G(Xlxl,;a})G(xzle;@)/d7_12el7'12(w—7+5)/d,rllzlen'l/z/(w +7_§)/dT12’1/2,61T12,1/2/(w —w—w)
7T
w

2
5 -
.l d(0w) G(x1x1/; @) G (Xx9xXa/; @) (w — % + %)(5@/ +
27.(_ 1 w//
=— [ doG(x2x1/;0)G (x1%2;w" — @) (w + @ — 7)5@1' +&——)
11 1"
— 2% doG (x1x17;0) G (xexe; w" — 0)d(w — @ + %)5@/ +o— %)
1 1 1 2
% — w’)G(x2x2/; UJ2 —|— OJ/)(S((U + w/).

= G (x2x1/; 5 - WG (x1x27; > +w)i(w —w') — TG(x1%1/;
The single-frequency non-interacting propagator can be obtained as a special case and is given by

! /dw’G(xlxl/;w” — w")G(x2x2;w"). (20)

1 o

Ko(w") = — [ dw' €™ G(x9x1/;w" — W )G(x1x%2;0") —
o) =4 [ (e = )Gl ') = -

As can be seen in the expression of the effective kernel [see Eq. (19)], the two-frequency propagators are also required

"

and can be obtained as
. einw’ " , " . e*iﬁw’ W , .
Ko(—n, ', ") = 5 G (x2x1/; o v )G (x1Xor; > +w') - 9 G(x1x175 o v )G (x2Xor; o +uw'), (21a)
einw W " e*inw W' W
Ko(w,—n,w") = G(x2x1/; 5 w)G(x1x2/; 5 +w)— G(x1x1/; 5 + w)G(x2x9/; 5 w). (21b)

Thus, we have Ko(—n,w,w”) = Ko(w, —n,w”) and we shall use the same notation Ky(w,w”) for both.

BETHE-SALPETER EQUATION IN FINITE BASIS

IIT1.
We recall that a general 4-point quantity is projected into a finite basis set of one-body orbitals ¢, (x) using
Kpars(w) = [ dlxixauxa) g (xa ) ) K (e o), () ) (22)
Thus, once projected, the pp-BSE given in Eq. (17) becomes
(23)

(W)Egru);tu (w) (Ko)turs(w)-

qurs(w) = (KO)pqrs(w) — Kpqow

The 4-point tensors can be written as matrices with composite indices as Kpqrs(w) = Kpqrs(w) such that the pp-BSE

becomes the following matrix equation

—~

K(w) = Ky(w) - K(w) - E(w) - Ko(w)
K(w) Kj'(w)=1-K(w) E(w) (24)

K 'w) = K;'(w) + Ew)

Uk

where 1 is the identity matrix. The aim is to find the zeros of K~ '(w). Hence, as a first step, we compute the matrix
elements of Ky(w) and E(w). The matrix elements of K are explicitly given in the following subsection while, in
this section, we assume a generic kernel with matrix elements =, »s(w). The following sections report an in-depth

discussion of kernel approximations.



A. Matrix elements of Ky
The non-interacting pp propagator is composed of two terms, that is, Ko(w) = K}(w) + K& (w) with
1 o
Kl(w) = g /dw' 209 G (xox175 w — W) G (x1%205 W), (25a)
T

Kl w) = 1 /dw' G(x1x1;w — W' )G (xax2; W), (25Db)

Their matrix elements will be computed separately. We recall the Lehmann representation of the one-body Green’s
function in the quasiparticle approximation

wi(x1) e} ( Xr Pa(x1) 0y (x17)
Glaxy;w) Z —€ — Z w—€q+in ’ (26)

where ¢; and €, are occupied and virtual one-body energies, respectively.
The first term is computed as

/dw/ 127700 X2X1/; w — w/)G(XIXZ’; w/)

pi(x2) e} (x1) Z Pa(X2) Py (x1/) Z i (x1 x2’ Z Pb(x SOZ (x2)
w—w' — (¢ +1in) w—w' — (g —1in) jw’— w' — (& —in)

dw’ i2nw’

= _7/dw’ i2nw’ [Z @i(x2)p7 (x1/) Z Pa(x2)p, (x17)
(w—¢ —in)

w — (w—€,+1n)

<Pj( X2’ Pb(x 90* ()
zj: w = Z W — b in)

:_ﬁ/dw, 20 Z pi(x2)pf (x1r)  wi(x1)ej(xe) 1 /d ! gine Z Pa(x2) @5 (x1) %(Xl)s@Z(Xz/)

—(W—g—in) W —(g+in 4r —(w—€a+in) W — (e —in)

_ 27 pilxe) ey (le)% (Xl)% Xz/ 27r1 Z a(x2)¢} X1f)<pb(X1)<pb(Xzf)

s i (6 +in) — (w—€ — = (w—¢€q+1n) — (&5 —in)
1 Z §07, X2 (,01 X1/)<P](X1 QO] X2/ i Z SDa Xo (pa Xl’)SDb(Xl)SDb(XT)
w— (& +€; + 2in) w — (€q + € — 2in)
and, once prOJected in the finite basis set, reads

i 0pi0qi0ri0s; 0p60ga0rash
KI -, _ pjPqiPriVsj B pbPqalraVs ) 27
(Ko )pars () 2 izjw—(ej—kei—&—ﬁn) Zb:w—(ea—&—eb—Zin) (27)

The second term is computed as

1
Kil(w) = fﬂ/dw'G(xlxl/;w — WG (xax2; W)

1 ©i(x1) <p (x17) a(x1)p) (x17)
o d () a
-/ >t DV o

w' — (& +in) — in
_1 Z pilx)ei(x) %(Xl)@é(xl'_)
47 —(w—¢—1n) — W' — (w— € +in)

)] 2 (ot T -1

©j(x2 % Xor) wp(x @Z X2')
y a5 atube
J

e +in)
/ Z pi(x1)@y(x1) 5 (2)@j (x2) / Z Pa(x1)} (x17) sﬂb( 2)p (x2)
(w—¢ — ! 47r i

in) w' — (¢; +1in) W —(w—¢€+1in) w — (e —1in)

= @ ( ) (Xll)gp](XQ)SD] X2/ 27‘(1 Z (pa X1 (pa Xl/)(pb(XQ)(pb(XQ/)
dm L (g +i) = (w—€ - — (w—ea+in) — (& —in)

__ 1 Z wi(x1)p] Xl’)SDJ (x2) 90] Xor) 1 Z a(x1)p Xl’)ﬁﬂb(XQ)@b(XT)
w— (& + € + 2in) w — (€q + € — 2in)




and, once projected in the finite basis set, reads

i 0qj0piOrils; 0gb9padrad
KH -, _ l N qjYpiOriUsyj qb9pafPraVsb ) 2
(Ko Jpars () 2 Z_ij—(ej—i—ei—i—Zin)+§b:w—(ea+eb—21n) (28)

These two expressions are gathered to form the tensor elements of K

(KO)qu'S(W) = (K([))pqm(w) + (Kél)pqm(w)

_ i 6Pj5qi67"i6sj . 5pb5qa5ra5sb
=5 ZW_(€j+€i+2i77) %;w—(ea—f—eb—mn) (29)

ij

_i Z 5qj6pi6'ri55j _ Z 5qb5pa57'a68b

2 ” w— (6 +e+2in)  w— (et e —2in)

Therefore, Ky has the following antisymmetric properties (Ko)pgrs = —(K0)gprs = —(Ko)pgsr = (K0)gpsr, Which can
be used to reduce the size of the space that one must consider. The two-electron basis set {gop(xl)cpq(xz)}{p a}E[1,N]?

(where N is the size of the basis set) is recast as

U {enn)enx2) e U { sop(xl)soq(XQ)\%@q(xl)sop(m) }M ot

(30)
In other words, the basis set is decomposed into its antisymmetric and symmetric parts. Because of its antisymmetric
nature, the non-interacting pp propagator is non-zero only in the first subset and the corresponding elements are
(Ko)pgrs = 2(Ko)pgrs- Note that in this subset we have p < ¢ and r < s. Hence, due to these restrictions on p, ¢, 7,
and s, only the second term in Eq. (29) is non-zero and the matrix elements in the antisymmetric basis are

_ , 07i0550pidqj : OradsbOpadgb
K, rs = — L8] phay ihdide Lae . 1
(Ko)pgrs(w) lgw—(ei—l—ej—l—ﬁn)+laz<bw—(6a+6b—2i77) oy

{‘Pp(xl)@q(XZ) — pq(X1)pp(x2) }
V2 p<q,q€[1,N]

In the following, we drop the bar symbol and remain in the antisymmetrized basis set. The corresponding matrix reads

1 (K)abar 0\ ' [idiaglw — (e, +€ 0
o = (05 ) = (T e S e —a) (52)

where diag(e,) is a diagonal matrix with elements ¢,,.

B. Eigenvalue problem

The aim of this subsection is to show that finding the poles of K (w) is equivalent to solving an eigenvalue problem.
The matrix equation for the inverse pp propagator can be recast as

K@) =K'+ 8w =iy )16 0 ) +Ew

—w €;j

=il(5 %) - (% 2,) -8 = -ism pri) -,

where €;; = diag(e; + €;), €qp = diag(eq + €), and w = wl. The metric M and the dynamic Hamiltonian matrix
H(w) are defined as

_(1 0 _ (C(w) B
M= (0 —1)’ Hw) = (—BT —D(—w))’ (33)

and the latter can be decomposed as R(w) - £(w) - LT(w), where the diagonal matrix &(w) gathers the (frequency-
dependent) eigenvalues and the left and right eigenvectors are given by

H(w) - R(w) = R(w) - E(w), Hi(w) L) = L) - EW), (34)



and fulfil the orthonormality condition £7(w) - R(w) = 1. The blocks of H(w) are given by

Cab,ca(w) = (€a + €)dacOba + iéii’,cd(w% (35a)
Bap.ij(w) = HEL ., (35b)
Dij’kl(—w) = —(62' + ej)éikéjl + iéfﬁkl(—wL (350)

with the following restrictions on the indices @ < j, k <[, a < b, and ¢ < d. Remember that ég};’rs (w) are the matrix
pp

elements in the antisymmetrized basis sets. (In addition, note that = ab.ij 18, in general, frequency-dependent. However,
for every kernel considered in this work, this coupling block is found to be static.) These three blocks will be referred
to as the hh-hh, hh-ee, and ee-ee blocks, respectively.

Using the eigenvalue decomposition of H(w), K ~*(w) can be written as
K w) = —iM-Rw) - [Ew) —wl] - LT(w).
Thus, the pp propagator is
K(w)=iR(w) - [Ew) —wl] ! LT(w) - M, (36)

and its poles are obtained through the non-linear eigenvalue problem

(CE(;:) Diw)) ' (i’() - “’((1) —01> ' (if() (37)

which determines €(w). Therefore, to solve this problem, one must find the w values such that w is an eigenvalue of
the w-dependent matrix H(w).

C. Kernel matrix elements

Now that the eigenvalue equation has been derived, the last missing ingredient is the expression of the dynamic
kernel matrix elements. The projection in a basis set of Eq. (19) yields

e [ A9) () ) By 60.0) 2 (=0 ~0,0) (K (026) 05 )

= ﬁ /d(@@) (Ko_l)pq,pq<w)(K0)pq,V(°~JaW)EE,I)A(_‘D7 _@7‘*})(K0)/\,TS(‘D’W)(Ko_l)rs,rs (w)

Epirs(W) =

(38)

where the simplification of the second line comes from the diagonal structure of Ky [see Eq. (32)]. As can be readily
seen, the two-frequency non-interacting pp propagators matrix elements have to be computed first. Once again, the
non-interacting propagator is decomposed in two terms

. A _ gl . A 11 . A
Ko(x1X2; X1/Xo; 0, w) = Kj(x1X2; X1/Xe; @, w) + Ky (X1X2; X1/X0/; 0, W)

e—in&.} w (39)

elne w w o -
G(x1x1/; 3 + @)G(x2xor; 3~ @).

~ w ~
== G(x2x1/; 5~ )G (x1x2/; 3 +) —




The first term can be computed as

N 1. - w . w o
K(I)(X1X2; X1/ X9y W0, w) = ielan(X2X1/; 5~ @)G(x1X2; 3 +0)

oin i(x2)pf (x1/) ©q (X2 % Xl’ % X1 % Xor) op(x1)f (x27)
— ul
- [zw el 3 Gelatel |5 et 5 At

£ —o— (& +1in) o5 -
_ Loma | g _eilx)ei(xr) Z Pa(X2)pq(X17) 3 P (x1) 95 (%) b X1 )i (x2)
— (5 —ei—in) — (% —ea+in) ; @—('—W-FIU w— (e —% —in)
_ lnwz ©i(x2) 7 (x17)p;(x1) 0] (X2/) 1 B 1
w—¢€ —€ —2in » —ei—in) @—(ej—%—i—in)

1nwz Pi Xz)% (X1/)<,Db X1 <Pb X2'
w—€ — €

1
ﬂ, T

1 mwz Pa X2)<Pa(X1')% X1 <Pj Xor [ 1

W—€q — € 6a+177) &—(ej—%—l—in)

1
*—6a+177) w—(eb—%—in)

7

mwz Va(X2)ps(x1/)0p(x1) 05 (X27)
w — €4 — € + 2in

where we have used the well-known identity

1 1 1 1
(w—a)w—-b) a—-b\w—a w—-0b)"
The second term is computed in a very similar way and the final expression combining both terms is

(K())(X1X2§X1/X2/;GJ> —77»W) =

1 € "%04(x2) 07 (x20) 05 (x1) 5 (x11) — €pi(x2) ] (x17) e (X1) ] (X2 1 1

5%: W& €= 2 LD(QQ in) &—(g—%+in)

1 3 e 904 (x2) 5 (X2 ) (X1) @p (X11) — €70 (Xa) @y (X17) on (x1) 05 (X27) [ 1 B 1 ]

25 oo R TR

1 € "% 0a(x2) s (%20 )05 (1) 05 (x17) — €% (32) 07 (x17) 05 (%1) 05 (%27) 1 1

iaj W — €q — € @—(%—ea—f—in)_@—(ej—%—l—in)

,Z T pa(x2) o (x2) 0 (x1) 0 (x17) _eim?a(xz)@i(xlf)%(Xl)%‘(xz') l 1 — — = ! ' ]
w— € — € + 2in O— (4 —e+in) @— (& —%—in)

Once projected in the antisymmetrized basis, (Kp)(x1X2; X1/X2/; &, —1,w) becomes

- 500101365t 1 |
~ _ —in® pj0qiOrjOsi .

(KO)PQ,TS(UJ7 n)w) € ; w— € — Gj - 2i'f7 [(,:] — (% — €; — 177) (:} — (6] — % —+ 1',7)

—mw pb(sqiarb(ssi 1 _ 1
Zwe,EbQIH[w (%—ei—jn) (’D_(eb_%_in)

i 0p0ga0ri0 1 1

—1nw pj-ga-rj-sa

e Zaw_ea—ﬁj‘FQiT] O— (4 —e+in) @—(e—%+in)

+ Gimw Z pb(sqa(srb(ssa

W— €, —€ 2i
b<a a b+ n
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This shows that the two-frequency propagator is diagonal. Because of this diagonal structure, only (Ko);; ;i (@, —1,w)
and (Ko)pa,pa (@, —7,w) are required to compute =ZPP (w). Using Eq. (31), these matrix elements can be recast as

—pq,rs
(Ko @, =, 10) =+ (Ko) () - (10)
0)ji,ji\W5 =1, - 0/j4,51 o — (% — € — 177) o — (ej — % + 1’17)
~ s _—inw ! 1
(Ko)ba.ba (@, =1, w) = =17 (Ko)pa,ba (W) | =75 i © i) | (4D
O—(§—eatin) @—(&—%—in)

This factorization is particularly convenient as it greatly simplifies the expression of the dynamic kernel. For example,
the ee-ee block of the kernel reads

= 1 . _ o= I _ _
S (W) = @z /d(ww) (Ko 1) igig () (Ko)igig (=1, @, w) B (=@, =0, w) (Ko) ke gt (@0, =1, ) (Ko )k i (w)
1 B 1
—€—in) @—(6—%+in)
XELP ) (=@, =@, w) (Ko )kt kit (@, =1, w) (Kg ki, k(@)
i i 1 1
= d(w@) e | = = — — — —
(27r)2/ _wf(gfejfm) w—(eingrm)_
XEPP (=0, =@, w) (Ko )kt ki (@, =1, ) (Ko )kt ki (w)
r 1 (42)

1 o~ 1 1
— d(o@) e @
(27)2 / (@o)e w— (4 —¢—in) @—(e—%+in)

I
™o
N | =
e
\

d(@@) (Kq )i (w)ie™ ™ (Ko)ijij (w) la} — (%
2

. 1 1

(Ko) ki k1 (w) (Kg )kt ra (w)

w

foa—in) @—(&—%+in)

§ ~ N —in@ 1 B 1
(27T)2/d(w)e Lﬁ—(é—q—in) ©—(6—g+in)

o 1 1
TPP (Lo ) e—in@ _
Xumkl( @, —w,w)e |fD — (% —€ — i77) w— (Gk — % + in)

}

If the kernel is static, i.e., ZPP  (©,w,w) = ZPP , then the integral is evaluated as

- 2 . 1 1
PP ()= L _=pp / 4o e~ _
) = Gy =i i-(G-g-m) b-(a-3+m)

This means that the approximate dynamic kernel ZPP reduces to the static one.

On the other hand, if one wishes to use a dynamic kernel ZpP (@, w,w), the corresponding integrals have to be

evaluated to obtain égg_yrs(w). This will be done in Sec. VI. To conclude this section, we report, for the sake of

completeness, the hh-hh and hh-ee matrix elements of the effective dynamic kernel

=PP () = (_i)2 Gw) e 1w ! - !
) = (g [ 49 lw— G-atm) o- (ea_;_m)]

XEEE’Cd(—d;,—w,w)e_i”“l — = — |, (44)

and
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2
Zpp _ ! ~ = p—in® 1 — 1
=) = gy [ G Lv— —atin) G-(a-2 —hﬁ]

IV. KERNEL APPROXIMATIONS

In this section, the kernel [see Eq. (10)] corresponding to various self-energy approximations are computed.

A. First-order Coulomb kernel

The simplest anomalous self-energy is the static Bogoliubov (B)
yeeB(11) = —iv(33F; 11/7H)G**(33"), (46)
which is of first order in the Coulomb interaction v. The corresponding kernel is easily computed as

_ 5Ge2(33")
=pP:B(99/. 11/} — _ I A
=rPB (22 117) = —iw(33'+; 11 )5Gee(22/) o

= _iv /I+.11/++ AN / ’
= (337;117)[5(32)8(3'2') — 6(32')6(3'2)] .
= —5 (21T —u(@25 117

= —%@(22’; 11').

where we have introduced 9(22';11") = v(22/;11') —v(2/2;11"). Hence, this kernel is recognized to be the antisymmetric
Coulomb interaction. The corresponding diagrammatic representation of the pp-BSE is represented in Fig. 2.

1 2/ 1 —— 2 1 2/ 1 2/

2 . 2—a—1 2 v 2 o~ <« 1

FIG. 2. Diagrammatic representation of the pp-BSE with a first-order Coulomb kernel. The dashed line represents the Coulomb
interaction while the solid lines correspond to one-body propagators.

B. GW kernel

By extending the conventional Hedin equations to the case of the Gorkov propagator, one can derive a GW
approximation for the Nambu self-energy (see Appendix A). In particular, the ee component reads

3o GW (117) = —iW (335 11')G*°(33'). (48)

In this case, W is a generalized screened interaction that accounts for anomalous bubbles as well (see Fig. 7). This
effective interaction reduces to the usual pp-RPA screened interaction in the normal phase limit. The corresponding
kernel is derived as

5G°°(33')

EPPEW(22/511') = —i 1) et
(22511) W )5Gee(22/) U=0

—%W(33’; 11)[6(32)8(3'2) — 6(32)5(3'2)] (49)

= —5IW(@2;11) - W(2%11),
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and corresponds to a screened version of the kernel obtained using the Bogoliubov self-energy in Sec. IV A. It is
interesting to note that the derivative of W has not been neglected as usually done in the eh-BSE case [3-5]. Within
the pp-BSE formalism, the corresponding term is exactly zero because the anomalous propagator vanishes in the
normal phase.

The screened interaction is given by

W(33';11') = v(33';11') — iv(34'; 14) L(42; 4'2')v(2'3'; 21'), (50)

where L(12;1'2") = L¢(12;1'2") + Lo(13;1'4)v(46;35)L(52;62") is the eh-RPA propagator and Ly(12;1'2)
G(12')G(21") is the non-interacting eh propagator.

1 2/ 1l —<— 2 1 2/ 1 < 2/

2 1/ 2 —<—17' 2 1/ 2 1’

FIG. 3. Diagrammatic representations of the pp-BSE with a GW-based kernel. The wiggly line represents the screened
interaction while the solid lines correspond to one-body propagators.

C. Second-order Coulomb kernel

The self-energy of second-order in terms of the Coulomb interaction can be written as
wee @) (117) = —iw @ (33;11)G°(33) (51)
where W) is an antisymmetrized interaction screened up to second-order, i.e.,
W@ (33';11") = v(33';11') — i5(34';14) Lo (42;4'2")5(2'3'; 21"). (52)

Hence, the kernel is

ZPp(2)(22/:11) = —= [P (22/;11") — W3 (2/2;11')). (53)

i
2
The second-order kernel ZPP(2)(22/;11’) has the same functional form and time dependence as the GW kernel

EPP-CW(22/;11).

1 2/ 1l —— 2

2 1’ 2 —4— 1’

FIG. 4. Diagrammatic representation of the pp-BSE with a second-order Coulomb kernel. (The first-order diagram is not
drawn.) The dashed lines represent the Coulomb interaction while the solid lines correspond to one-body propagators.

D. T-matrix kernel

Finally, another usual self-energy approximation is considered, the so-called pp T-matrix approximation [6, 7]. This
approximation has first been generalized to the Gorkov propagator by Bozek in a diagrammatic framework [8], before
being derived in a functional derivative framework by some of us [1]. The self-energy approximation of interest in this
context is

ch,GT(ll/) _ th(22/)ch(12; 2/1/)’ (54)

where T°° is the anomalous component of the generalized pp T-matrix. Hence, this means that the kernel associated
with this self-energy is zero in the normal phase.
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Using the pp Gorkov-Hedin equations [1], one can derive self-energy approximations of higher order in T' through
vertex corrections. The self-energies employed to derive approximate kernels that do not vanish in the normal phase
must be composed by a single anomalous propagator. One example of such self-energy is produced during the first
iteration of Hedin’s self-consistency procedure, as performed in Ref. 1

yeetsTe(11) = (—i)2T(34';14)G(4-=2))G(24)T(2'3; 21')G*°(33). (55)

where
T(12;1'2") = —9(12;1'2") —iT(12;33") Ko (33"; 44" )v (44’5 1'2") (56)
is the usual T-matrix computed at the pp-RPA level. Hence, the corresponding kernel is of second order in T
It is interesting to note that this self-energy is exactly the same as the second-order one of Eq. (51) but with a

frequency-dependent effective interaction 7" instead of the Coulomb interaction.
Once the first-order self-energy of Eq. (46) has been added, the kernel is found to be

=pp(27) (227, 11') = _%[W(2T)(22’; 11) — WD (2'2;11')], (57)

where WT) is an effective interaction analog to W®), i.e.,

W) (22/,11") = v(22';11') —iT(24; 14) Lo (43; 4'3")T'(3'2'; 31"). (58)
This T-matrix kernel ZPP:(27)(22/;11) has the same functional form as the second-order and GW kernels but the time
dependence is more involved because T is not an instantaneous interaction. Computing the full frequency-dependent

kernel ZPP(2T)(22/;11') is beyond the scope of this work. However, this kernel will be computed in the approximate
case where the T-matrix effective interaction is considered static.

V. STATIC KERNEL APPROXIMATIONS

A. Static first-order Coulomb kernel

The first-order kernel, i.e., the one arising from ¥°*B (see Sec. IV A), is the antisymmetrized Coulomb interaction.
This kernel is static because the Coulomb interaction is instantaneous,

EPPP (xoxg; X1X1/; @, 0, w) = EPPP (x5 X1%1/). (59)

Its matrix elements in the antisymmetrized basis are

=prp,B _ _;
Epars = —i{pgllrs) . (60)
Thus, the associated eigenvalue equation reads
CRPA = (€a + €)8acOba + (ablled) , (61a)
By = (abllij), (61b)
DR = —(ei + €;)00 + (ij||kl) (61c)

where the antisymmetrized integrals are defined as (pq||rs) = (pq|rs) — (pq|sr) in terms of the bare two-electron
integrals in the spinorbital basis

x X))o, (x1) s (X
(pgq|rs) = // 2063 90q|r12_90r§| 1)@s(x2) dx; dxs . (62)

This is the well-known pp-RPA eigenvalue problem.
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B. Static GW kernel

Before projecting the GW kernel (see Sec. IV B) in a basis of spinorbitals, it must be transformed to frequency space.
The screened interaction is not instantaneous and its Fourier transform is obtained as

ZPP W (%00 X1 X130, @, W)

i o ~
(WToqr +0T11 +wWT. . .
=3 /d(7’22'7'11'722',11/) el (@ To2 FET FWTa0r 117 (W (x9X9/; X1X1/; Toor, T117, T22/,117)

—W (X9 X0} X1X1/; Tor2, T117, T2/2,117)]

= —% /d(Tzszu'Tzz',n/)€i(@722'+@T“’+W22/*“/) [0(721)0 (7217 )W (X9Xor; X1X1/; T22r)

—0(72r1)0 (o1 )W (X2 X2; X1X1/; Tora)] (63)
B _% /d(711’722f,11'> [5(@1’)ei(‘:’m'+@T“/+W“')W(X2X2’9Xlxl’?712’)
—0(7gr )l OV FEOTI T ) T (%0, %01 X X3 Tor /)
= —% /d(ﬁl/) |:ei(&T11/+lell)W(X2X2/;Xlel;Tlll) — ei(‘DTl’lJ”:’Tll’)W(xQ/xz;xlxlf;711/)} .
This finally yields a kernel that depends only on two frequencies
EPP’GW(XQXQ/; X1X1/50,0) = f% [W(xoXo; X1X1/; @ + @) — W (X Xa; X1X1/50 — ©)] (64)
Once projected in the antisymmetrized basis set, the above expression reads
=W (3,8, ) = — 5 Wogrs(@ + D) + Wogra (B = &) = Wapro(@ +) = Wopro(@ = )] (65)

2

The static limit of this kernel corresponds to taking the zero-frequency limit, that is, W(w = 0). Therefore, the
associated eigenvalue equation is

Cz%I,}[c/d = (€a + €)0actba + (ablled) + (Wepea — Whaed)s (66a)
Bg)vyj = (abllig) + Wapi; — Whaij), (66b)
DG = —(e + €)0ub0 + (ilIkL) + (Wi — W), (66¢)

where W¢ = W¢(w = 0) is the correlation part of W. Its matrix elements are given by

Wpgra(w) = / d(scr %070 %) 905061 ) % (k2 ) W (323 X5 )epr (X0 ()

~ (palrs) + Y | metoan _ MM (67)
" w—Q,+in  w+Q, —in

= (pq|rs) + Wys(w),

and the two-electron screened integrals (or transition densities) are defined as

Mpgu = [Xiau (apli) + Yia u (iplag)]. (68)

Here, Xjq,, and Y, , are the matrix elements of the eigenvectors of the eh-RPA problem
ARPA  pgRPA X X
(_BRPA _ARPA |” YZ =0, YZ (69)

where Q,, is the associated eigenvalue. The matrix elements of the (anti)resonant block ARPA and the coupling block

BRPA 1ead
RPA = (€q — €1)0ij0u + (iblaj) (70a)
toip = (ijlab) . (70b)

Finally, note that the indices of W in Eq. (66) are not exactly the same as the ones reported in the main manuscript.
This is because the expressions of the main manuscript are simplified under the assumption that the orbitals are
real-valued.
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C. Static second-order Coulomb kernel

As mentioned in Sec. IV C, the second-order kernel has exactly the same functional form as its GW counterpart.
Hence, the Fourier transform and the basis set projection do not have to be performed again. This subsection is just
concerned with the matrix elements of W(? (which are obtained by projecting Eq. (52) in the finite basis set)

Wimaw) = (palrs) =1 (pollrt) (Lo)ewvw(w) (wyllus) , (71)

tuvw

where the matrix elements of the non-interacting eh propagator are [9]

. 0 we(suvm . 0 wm(suve
(LO)tuvw(W) = IZ ! A - IZ w ( ! P ’ (72)

w— (€c — €m — 2in) €m — €c + 2in)

me

where dpgr = 0pgdqr. This yields

pml|re) (eq||ms pel|rm) (mqlles
Wiih(e) = {pars) + 3 L _ L'e o el g) _ e (|€m L {male 2) »
= (palrs) + W) (w).
Finally, within the static approximation, the elements of the various blocks are
Clipea = (6t @)dacdha + (ablled) + (Wi = Wiik), (74a)
Byl = (abllif) + (Wed) = Wiol), (74b)
DTy = — (e + )0 + (ijllkl) + (WikD = W), (T4c)

D. Static T-matrix kernel

Once again the Fourier transform and projection does not need to be performed and similarly the matrix elements
of WT) reads

T T,
W (2T) pmre eqms _ permdmges 75
pars () = (palrs) +Z w— (€ —€n—2in)  w—(6n —€+2in) ]’ (7%)

where the tensor elements of the effective interaction T are given by

N+2 MN+2 MN 2 MN 2)
— PQ; TS,V rq,v TS,V
Togrs(w) = {pallrs) +Z o _Z oV iy (76)

= <pq||7"8>+T;§qrs( w).

The elements of the numerator are defined as

Mpt? =" (palled) X302+ (pallkD) V552, (77a)
c<d k<l

MY =" (pglled) X372+ > (pallkl) V)2 (77b)
c<d k<l

in terms of the eigenvectors of the pp-RPA problem
CRPA  pRPA . XN+ yN-2\  xN+2 yN-2 . QN+2 o 78)
_BRPA _ pRPA yN+2 xN-2| = | yN+2 xN-2 0o qv-2)-

Finally, within the static approximation, the elements of the various blocks are

2T c,(2T c,(2T

COT) = (e + e0)daca + (ab|ed) + (W5 —wi2D), (79a)
2T .. (2T 2T
((zbz; = (abllij) + (W;b(ij ) — W;fagj )), (79b)

DY) = — (e + ey + (jllkl) + (WEET — Wi ™), (79¢)
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VI. DYNAMIC KERNEL APPROXIMATIONS
This section aims to compute the effective dynamic kernels [see Eq. (19)] associated with the GW and second-order
kernels derived in the previous section. We recall that the static part of the kernel is left unchanged in =ZPP.
A. Dynamic GW kernel
1. The hh-hh block
The expression of the hh-hh block matrix elements is obtained by combining Eqs. (42) and (65)

Zpp.ow v | / -5 e—in ( 1 1 )
=M w)=—— [ d@w)e — = — — = o
il (@) 2(2m)? (@) O—(§—¢—in) @—(—%+in)

- . o N —in® 1 1
><[Wijkl(—@—w)—i—Wijkl(—w—kw)—Wjikl(—w—w) Wgzkl( w+w)]e 77 (_ o )

w— (% el—in)_w—(ek—%+in)

We start by computing the dynamic part of the first term Wi (—w — @)
i o 1 1
—— [ d(@w) e —
2(27r)2/ (@) (v?—(é’—e]*—in) @—(€¢—‘§+in))
(e M (1Y
o—o- (Y —1) -6 (D, +m) G-(G-a-m) D (h-g+m)
—i - 1 1
— d(o@) e~ i@ _
2(27r)2/ (Gw)e (w—(g—ej—in) d}—(ei—g—f—in))
o Z |:_ Milj’/“M[;aN . - Ml:;i,qul,H : :| e—in&; (_ - 1 - — = 1 = - )
O—(—0-Q,+in) w—-(-0+Q,—1in) W—(5—ag—in) w—(—%+in)

- 2(2_;)2 /d(m) e (w - (5 —16j —in) & (e : 5 +177)>

Mik,uMl?"p, 1 Mkz ,uM Ly 1 e—inw
)

x . - S 4 — m—
(zﬂ:w—(—w—Qu—Hn)w—(Q—61—177) W= (—0+Q,—in)w— (e — % +in

m/d@)ei”@ (@_(;Eej—in) T i (- : +1n)>

% Z Mik,uMl?,p i Mkz ,uM L
~(F—a—in) - (o-Qu+in)  (~0+Q—in) — (e —F +in)

y Z Mik,pM[;‘)u - M;cki,qulvlL
O— (=% +ea—Q,+2in) @—(Q —e+ 5 —2in)

m
- [0S (s e T e )
47 (- —inNo—(—g+a—Qu+2in) o&—(—%5+in)0—(Q —e+ %5 —2in)

* *
Mg, My, My, M,

_ ( 27T1)2< i gl >
47 u (§$—¢—in)—(—$+a—Q,+2in) (Q—ea+%—2in — (¢ — % +in)

1 Z zk ,LLMZJ I + M;cki,qulv#
w—e—+Q,-3in w—e—¢+Q,—3in)"
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The dynamic part of the second term Wi (—w + @) is computed similarly

—2i) /d lnw< 1 1 . )
5o w b (St

Mik,#M[§ m M;:z HMjl,,u
x<z(w My, M |

Foa—in)—(@=-Qu+in)  (@+Q, —in) = (e =5 +in)

wo\2

-1 o 1 1
= d(@)e™ | —— — — = o

47 O—(5—¢—in) @—(— % +in)

« | = Z MikaﬂM[;',p, + Mlzi,p,Mjly/L
o= (5 —a=2n)  ©-(=Q e -5+ 2in)

_1 d@)e —in® Z ( M ,uM Ly + 1 Mik:uMlz’,p >

T 4r (- —inNo—(—Qu+e—%5+2n) o—(—5+in)o—(§+Q, —¢—2in)
— _(_271-1) Z ( Mki,;AMjl’lL + MikvﬂMlE,u >

A7 p (§—¢—in) = (—Qu+ e — %5 +2in) (§+Q,—ea—2in) — (& — % +in)

Y M Mt L MMy, _

2 m w—€ —€e+8Q, =30 w—e—¢€+Q,—3in

This finally gives the following matrix elements

ﬁpp,GW(_w) — <’L Hkl> . iz Mikv#MlE’,u - Mjk=ﬂMl>;,u MI;kLqul-,# - MI:j,p,Mily#
Tkl J 2 w—(—€—€e+Q,—-3in) w-—(——e+Q,—3in)
Mg My — My Mg, Mg, M, — My, My

lj,n Jkout g ki, p kj,
— T . (81
w—(—€ —€ +Q, —3in) w—(—j—ek—i—Qu—Sln)) (81)
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2. The hh-ee block

The expression of the hh-ee block matrix elements reads

iPP’QW _ —i d(oo —inw 1 _ 1
—ab,ij (w) 2(27’[’)2 / (ww) € ((:} — (% — e+ 177) o — (6a — % — 177)
1

Lo 1
X [Wapii(—0—@)+Wepii (—0+0) —Whaii (—0 —©0) — Whaii (—0+@)] e 1% (_ = — — = PR )
[ J( ) J( ) J( ) J( )] wf(ifejfln) W*(Ei*§+177)
(82)

We start by computing the dynamic part of the first term W (—0 — @)

1 . 1 1
— [d@)e ™ | = — — = -
47 O— (9 —ea+in) ©—(ea— % —in)

2
% Z MaiaﬂM;b,M o Mza MMbj»#
O—(=5+e—Qu+2n) 0 (Q—e+ 4 —2in)

m

1 d(@) e Z ( Mai M, , _ 1 Mo, Moj,u )
~ir €a—*—l’l7) — (=546 —Qu+2in) O—(§5-—ea+in)o—(Q, —e+ 4 —2in)

_ —(—2m1) Z < Mahqu*b M 4 M;, ;LMbj,u )
47 u (a—%—in) = (=% +¢& —Qu+2in)  (Qu—e+%—2in) — (5 —e+in)

iy (MM MMy
€a — €+, —3in e —€+8, —3in

)
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The dynamic part of the second term Wi (—w + @) is computed similarly

1 - 1 1
= = [ d@)e @ (~ _ _ —— )
4 O— (5 —e+in) @—(e—% —in)

o[- Z Mai,uM;b,u I Mitz,uMijlL
” O—(9+Q—¢ —2in) ©—(—Q+e— % +2in)

- 1@ S (e e e e e
47 - O—(ea—5—in)0—(—Qu+e—5+2in) O—(§—e+in)o— (5 +Q, —¢ —2in)
_ —(—2mi) Z ( Mz‘z,uMbj,u n Mai’uM;b,u )
A7 # (a— % —in) = (=Qu +e — 5 +2in) (5 +Q,—¢ —2in) — (5 —e& +in)

- iz Mo M, _ 4 Mai M, ).
2 - € — €+, —=3in e —¢+Q,—3in

The two remaining exchange terms are easily computed and this finally gives the following matrix elements

Mai,#M* - Mbi,,uM* M Mij_L — M?* Ma

Zpp,GW — _ilabllid) — 1 Jbu ja,p ia,p ib,utmagp
avlyy (W) = —iabllif) =3 zu: ( —(éa — € + Q,, — 3in) —(ep — € + Q, — 3in)
Mai,qub w Mbi,HM;a./,L Mitz,uMbjM - Mi*b yMajﬂt
: A S . (83)
—(ep — €5 + 8, — 3in) —(€q — € + 8, — 3in)

8. The ee-ee block

The expression of the ee-ee block matrix elements reads

=pp,GW _ i / ~ N\ —in@® ( 1 1 )
= w)=—— | dlww)e = = — — = P
avied () 2(2m)? (@) O— (5 —e+in) @—(e—% —in)

w

- 1 1
d(—w—a cd(—W0+w)— d(—w—w)— acd(—0+w I . - = . .
X [Wapea(—0—@) +Waped (—@0+0) = Whaed(—0—0) = Wiaca(—0+w)]e <w—(§—ed+1n) w—(ec—Q—m))

(84)
We start by computing the dynamic part of the first term Wpeq(—0 — @)

—i o 1 1 Mye M M, M,
o fae (L (3] e, Wi ]
2(2m) O—(§—e+in) @—(ea—% —in) u w—(—0—-Q,+in) w—(-w+Q,—in)

xe_i”“’<_ wl — — = lw )
Y e ey Sy

- 2(2_;)2 /d(m) o (az - (5 —1 e +in) - (c i 2~ im)

y 727 Maf,ﬂMdb,u. _ 1w . 727 MCT#Mbd,/_L. i § 1 ' —in®
u O—(—0—=Q,+in) @ — (e — 5 —in) - O—(—0+Q,—in) @ —(§ —eq+in)
i(—2mi i 1 1
— 1( ﬂ-l)/da)e—mw _ : i :
2(2m)? O—(5—e+in) ©—(e—%—in)
(S ey Ml
=5 —in) - (-0 -Qu+in) S (=0+Q —in) — (5 —e+in)

=L [apene ( R —— )
4 O— (9 —ea+in) ©—(ea—%—in)
Mae, Mg, ,

(2 I
©— (% — e —Q, +2in) ” O — (=% + e +Q, —2in)

123
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-1 i 1 Mz, M,
o fagee (oL MaMan

47 ” O— (5 —e+in)w— (=% +ea+Q, —2in)

+Z Mac, Mg, , 1
” O— (9 —€—Qu+2in)0— (e — § —1in)

—(—2mi M:a LMbd, Mac, M}

e B e o LT I e
T P (=% +ea+Q,—2in) — (5 —e +in) " (€a =5 —in) = (§ — € — Qyu + 2in)

i 5 Mo Moa,u N Mac,u Mg,
2 p w—(ea+e+Q,—3in) w—(e+e+Q,—3in))"

The dynamic part of the second term Wapeq(—w + @) is computed similarly

o 1 1
— [ dwe ™ | — — — = R
47 O—(§—e+in) @—(e—%—in)
oy Mae, Mgy, oy M, Mya,,
N@—(ec—%—&—QM—Qin) M&)—(%—Qu—ed—l—Qin)
T P o — L Y
47 ” O— (5 —e+in) 0 — (e — & +Q, — 2in)

Mg, Mba, 1
O s RS T F i )
_ —(—271'1) Z _ Mac,p:M;b,Mw : —|—Z _ . M:Q’ZMbdM -
47 (e — 5+, —2in) — (¥ —e +in) u (€a— % —in) — (5§ — Q — €q + 2in)

ca,p

i
= — + .
2;(‘*’_(%4’50"‘5%—3”7) w— (€q + €4+ Qy — 3in)

MacyuM;b,u M, Mbd,u )

which, finally, gives the following matrix elements

=2 . 1
= @) = —itatlled) - 5 3

14

* * * *
MaC,MMdb7M — Mbc,uMda,u Mz, Mya,u — MdWMad_#

w— (eq + €. + 2, — 3in) w— (ep + €4 + Q, — 3in)

MachM;b,;L - MbCaMM;a,;L M:a,uMbd7M - Mc*b,;LMadaM (85)
w— (ep + €.+, — 3in) w— (€q +€q+Qyu — 3in)

B. Dynamic second-order Coulomb kernel

The derivation of the matrix elements of the dynamic second-order kernel is almost the same but with W,Sﬁ)s (w)

instead of Wpg,s(w). The corresponding expressions are reported below.

1. The hh-hh block

ZPp(2) N il — L (im|[ke) (ejllml) — (im|[|ke) {ei|[ml) = (ie[lkm) (mjllel) — {(jel[km) (mi]|el)
Zign (—w) = AR 22( w—(—€ —€ + € — €y — 3in) * w—(—€ — € + €. — €y — 3in)
(im||ke) (ej|lml) — (jm||ke) (ei][ml) = (ie[lkm) (mj|lel) — (je|[km) (mi||el)
+ w—(—€ — €+ € —€m —3in) + w— (—€; — € + € — € — 3iN) ) (86)

me
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2. The hh-ee block

=pp, . .. i aml|ie) {eb|lmj) — (bmllie) (ea||lmj aellim) (mbllej) — (be||lim) (mallej
o)) = i) — 3 (el (lmg) = Gmlie) {callms) , faellim) (rble) — belim) tmalle
2 (€a — € + €c — € — 3i) (ep — € + €c — € — 3iN)

me

(aml|ie) (eb||mj) — (bml|lie) (eal[mj) = (aellim) (mb|lej) — (be|lim) (mallej)
+ —(Gb — €+ € —€m — 3177) * _(ea — €+ € — €m — 3177) ) ' (87)

3. The ee-ee block

=pp.(2) . i {(am||ce) (eb|[md) — (bm||ce) (eal[md)  (ael[cm) (mb||ed) — (be|lcm) (malled)
g — —i{ab|[cd) — L
“b’Cd(w) i (abljed) ZZ( w— (€q + €c + €c — € — 3iN) + w— (€p + €4 + €c — €, — 3iN)

me

(aml||ce) (eb||md) — (bml]|ce) (ea||md) (ae||lem) (mbl|led) — (be|lem) (mal|ed)
* w*(€b+€c+€e7€m*31n) - w7(€a+€d+6675m*3i7]) ) (88)

VII. SPIN-ADAPTATION
A. Spin-adaptation of the eigenvalue problem

In Sec. ITI, the antisymmetry of K, K, and Z has been used to reduce the dimension of the matrix to diagonalize
from 4K?2 to K(2K — 1) (where K is the number of spatial orbitals). This can be further reduced by spin-adapting the
antisymmetrized basis set defined in Eq. (30). This is the purpose of the present subsection but, first, additional notations
must be introduced. For the sake of conciseness, the notation ¢, (x1)¢,(x2) = (0p(X1)pq(X2) — @q(x1)ep(x2))/V2
will be used. In addition, we write a spinorbital index p with the more general notation p, (with o = 1 or |) as the
spin must now be specified. Hence, in the remainder of this subsection, Roman letters p, g, r,... correspond to spatial
orbitals instead of spinorbitals.

The K (2K — 1) antisymmetric basis functions of Eq. (30) can be further divided in three sets of size K, K(K — 1),
and K(K —1) as

{0 G20, (c2) | (89)

{090, (x2) | U{#n )90, (2 }
In the first set, the two spinorbitals have the same spatial part but a different spin. This corresponds to a set of singlet
states (S = 0). In the third set, the situation is reversed. This forms two sets of triplet states (S = 1) corresponding to
Mg = +1 with K(K — 1)/2 terms each. The basis functions composing the remaining set are not spin eigenfunctions
but this set can be combined as

pE[L,K] p<a,q€[1,K],0€{t,l},0'#0 p<a,q€[1,K],c€{t,l}

{ op (1) 20, (Xz)};’” (1) g, (x2) } U { Pp (1) 20, (XQ)}{D’” (1) g, (x2) } (90)
p<q,9€[1,K] p<q,9€[1,K]

to produce a set of K(K — 1)/2 triplet states with Mg = 0 and K(K — 1)/2 singlet states, respectively. Finally, the
two sets of singlet states can be combined as a unique set of K(K + 1)/2 singlet states, as follows

{ Ppr (Xl)Qoqi (x2) — Pp, (Xl)ﬁaqT (x2) (91)

\/i” L+ 0pg }péq,qe[laK]

Because the Hamiltonian is spin-independent, the coupling between triplet blocks, and between singlet and triplet
blocks, is zero. Hence, instead of diagonalizing a matrix of size K (2K — 1), one can diagonalize two independent
matrices of size K(K +1)/2 and K(K — 1)/2 to get the singlet and triplet states, respectively. The matrix elements
of one of the three equivalent triplet eigenvalue problems read

3Cab,cd = Ca (923)

¢bT,C¢dT7
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®Buab.ij = Basby.irirs (92b)
*Diju =D (92¢)

iTjT,leTv

with the following restrictions on the spatial orbital indices i < j, k <[, a < b and ¢ < d. The singlet matrix elements
are slightly more involved

Casbyerd, = Caybyerd, (93a)
VI+0aV/T+0ca

By — Bayb,,ivj, = Bayby iz, : (93b)

D

1 ipjy kel T Diu’mkrh
Dij,kl = s (936)

V14 6v1+ 6

with the following restrictions on the spatial orbital indices ¢ < j, k <1, a < b and ¢ <d.

1
Cab,cd =

B. Static first-order kernel

The triplet block in spatial orbitals is equal to the following spinorbital block
3Cab,cd = (GaT + ebT)éaTCT(SdeT + <aTbT||CTdT> = (Ga + eb)éacdbd + <ab|\cd> s (94)

and this leads to the following triplet pp-RPA eigenvalue problem

Bcab,cd = (Ea + eb)éacébd + <ab||cd> s (95&)
*Bap,ij = (abl|ij), (95b)
3Dij,kl = —(Ei + ej)éik(Sﬂ + <Zj||kl> , (95C)

which is identical to the one of Sec. IV. Remember though that the indices now correspond to spatial orbitals. The
singlet block is worked out as

(eaT + €b¢)5a¢0¢5b¢d¢ —(€a, + ebT)5a¢0¢5b¢d¢ + (arby|lerd)) — (aybyl|erdy)

1
Ca cd —
bied V14 0gpvV1+ Ocq

96
(€ + €b)0acOpa + (ablcd) + (abldc) (56)
VI+6apV1+ dcd '
Hence, the singlet eigenvalue problem is
1o - (Ea + eb)éacdbd + <ab|Cd> + <ab|dc> (97&)
ab,cd /71 T 5@() /71 T 5cd )
blij) + (ablji)
By = 2 7 o7h
Y9 T /T 0 (970)
1Dy = 6T ) 0udin + (IR + (i lik) (976)

V146714 6 .

C. Static GW kernel

Before spin-adapting the static GW kernel, we recall that the screened interaction is spin-independent [10], i.e.,

WPT‘ZTTTST = Wpuuma = Wpﬂurr% = Wmfhmsw
W, =W, =0,

prqurysy pLarTr sy

(98)

and the non-zero elements will be denoted as Wp,,s. These tensor elements in spatial orbitals are

WPW’S (W) = <pq|’l“8> + W;qrs (w)7 (99)
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where
m W_Qu+177 w—|—QM—117
The screened integrals are defined as
Mpgp = [Xia (aplia) + Yia,u (iplag)], (101)

ia

with X, , and Yj, ,, the eigenvectors of the singlet eh-RPA eigenvalue problem. Therefore, the derivation of the singlet
and triplet blocks closely follows the previous subsection and yields

3C’ab,cd = (€a + €v)0actba + (ablled) + (Wipea — Wigea) (102a)
*Bab,ij = {abllig) + (Weyiy — Wiaij), (102b)
*Dij = — (& + €)0i60 + (@5l1kL) + (Wi — Wiira), (102¢)
and

Oy = (€a + €)0acba + (abled) + (abldc) + WS, .q + Wbacd (103a)
’ VI+0a VT + ca

1Bab,ij _ (ablij) + (ab|ji) + W€ abij T Wba” (103b)

VI+ap/1+ 635
Dy = — (€& + €j)dirdju + (ijlkl) + (ij[lk) + Wy + W5 Jikl (103¢)

V1+0ivV1 4 0w

D. Static second-order kernel

In this case, the interaction is not spin-independent and we start by focusing on the spin-adaptation of the effective
interaction before turning to the spin-adapted pp-BSE blocks. The 1111 contribution reads

Yy mea||TT€a> (e gtllmost)  (preor|lrime) (mogrlles st)
PTQTTTST €e )

— €m, — 2in) w— (€m, — €, +2in)

me oo’

_ 2 (pm|re) (eqlms) — <pm|7"€> (eg|sm) — (pmler) (eq|ms) + (pmler) (eq|sm)
_Z[ w — (€e — €y — 2in)

me

2 (pefrm) (mgles) — (pe|rm) (mg|se) — (pe|mr) (mgles) + (pe|mr) (mq|se)

w— (€m — €+ 2in)

(104)
The 1]1) component is
e 2T . ZZ mecf||rTeU> <eo’q¢||7.n<75¢> _ (preq[|reme) <m0q¢||?018¢>
prarrrs, ( s L (€., — €m, — 2in) W — (€m, — €, +2in)

_ 2 (pm|re) (eqlms) — (pm|re) (eq|sm) — (pm|er) (eq|ms)
Z[ w— (€c — €m — 2in)

me

2 (pe|rm) (mgles) — (pe|rm) (mg|se) — (pe|mr) (mgles)

w— (€m — €+ 2in)

(105)
Finally, the {11] contribution reads
w2 ZZ pima||rTea> {eorgtllmosy)  (pieotllrrme) (mogrllessy)
m‘””si (€e,) — €m, — 2in) w— (€m, — €, +2in)
me oo’ (106)

55 pm|er (eqlsm) (pelmr) (mglse)
w—(€c— €m —2in)  w — (€ — € + 2in)
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The triplet and singlet eigenvalue problems can be deduced

3Cabed = (€a + €)0acOpa + {ablled) + CW5E — W), (107a)
3 Bapij = {abllig) + CW5 — W), (107b)
*Dij = — (& + €;)8ib5 + (ij]|kl) + (SWZ»CJ»’S) - 3V[/'JCZ,EQ)), (107c)
where
@ (o) = Z 2 (pm|re) (eqlms) — (pm|re) (eq|sm) — (pm|er) (eqlms) + (pmler) (eq|sm)
pars — W — (€c — €m — 2in)
2 (pe|rm) (mgqles) — (pe|rm) (mq|se) — (pelmr) (mqles) + (pe|mr) (mq|se) (108)
w— (€m — € + 2in) ’
and
ver (et @)0ucdha + (abled) + {ablde) + WG + W) (1005)
abeed VT /T + Oea ’
.. . (2
1B, — (ablij) + (ablji) + Wabgj) 1Wba§j) o)
" VI F 0 /1+ 055 ’
s et ) udi + (k) + Gllk) + W + W (1090)
ij,kl iilii;x/TiE?ﬁ; 5
where
) (w) = Z 2 (pm|re) (eqlms) — (pm|re) (eq|sm) — (pm|er) (eqlms) — (pmler) (eq|sm)
pars — W — (€c — €m — 2in)
2 (pe|rm) (mgqles) — (pe|rm) (mq|se) — (pelmr) (mgles) — (pe|mr) (mq|se) (110)

w— (€m — € + 2in)

E. Static T-matrix kernel

Once again, the effective interaction is spin-dependent. Before spin-adapting the static T-matrix kernel, we recall
the tensor elements of T for the various spin cases. The 1117 contribution reads

N+2 N+2 * N-2 N—-2 \x
T _ MPTQm (MMSm _ Mqu v MTTS% )
PrarTESt (W) = (prarllrest) + Z N+2 Z N—2
— Q)7 +in - —Q) " —1in (1)
o+ 22 pesy R ousy
—3Q) 2 iy ~ w—=3N "2 _ip’
where the triplet transition densities are given by
SMpah? = (palled) X502+ (pallk) 2V, (112a)
c<d k<l
3M1§g) 2 Z (pq||cd) SX(Z 24 Z (pq]| k1) SYkaf. (112b)
e<d k<l
The 1/1) component is
N+Q N+2 * A4N'2 AfN 2 y
pT‘]iv TS,V prql,V TS,V
Tprayres, (W) = (palrs) +Z QN+2 —|—177 - ZV: -2 —ip
= <pCI|7“S> + 1 Z 1M1%41_/2( Mrj\s[-l? _ Z 1Mp% u2 Mg u2) + } Z SM%—EF(SM%T/Q) _ Z SM;% y2(3M£ u2)
2 —10N+2 1 —10N-2 _; 2 w—=30N*T2 4 w—10N"2_34
v n v n o n p i

(113)
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where the singlet transition densities are given by

d) + (pg|dc) (pq|kl) + (pq|lk)

LpN+2 {pqlc Ly N+2 lyN+2, 114a
Pq, ;l /1 +6cd cd,v kzgjl /71 +5kl kl,v ( )
M= (pqlcd) + <pQ|dC>1XN72 'y (pqlkl) + <pq|lk>1YN72 (114b)

= m cd,v ~ m kv -

Finally, the /11| contribution reads

N+2 N+2 * N-—-2 N—2 \x*
T s ( ) pq|sr T Z pwm (MTTsi v:_ Z Mqu, MT‘TSL, )
PLATT1SY — N 1y — - oN-? "y
ey - (3 e Mﬂm |y PR L (s TMEECMAR | MM
2\5 w0 w1t 2\457 w3l PP i 47 w—1) P -y
(115)
The spin components of T' can be used to compute the spin components of W) as follows
c,(2T) ZZ Prmo”@ e o/ 4tMaSt TPTEa/TTmangqwa/sT
prarryss ( w— (€, — €m, —2in) w— (€m, — €, + 2in)
" o (116)

_ Z meTTTeTTeTquT st TpTeTTTmTTmT%eTST + Z TpT7’l¢7’Te¢TeiqulsT _ TpTeLTTmLT"U’ITelST
w—(€c —€m —2in)  w— (€ — € + 2in) —~ |w—(ec—€m—2in)  w—(6m — €+ 2in)

We 277:)3 Z Z meaTTe /Te o/diMoS, TpTea/’rTmUTmU%eg/:sl
PraLTy l w— Ee , —€m, —2in)  w— (€m, — €, T 2in)
me oo’ (117)
_ Z PTmTTT%TeTqum% _ Tpresrims Tmpgpers, Z Tprmyrre, Te qymys, _ Tpreyrim, Tmyqpe;s,
w—(€c—€m —2in)  w— (€ — € + 2in) —~|w— (€e — €m — 2in)  w — (€m — €e + 2in)
2'1") ZZ ¢m0rTe /TGU/Q¢m”S¢ o Tp¢CU/TT’n’LO-TquT60/S¢
p¢qT”S¢ (€e,) — €m, —2in)  w— (€m, — €, + 2in)
me O'O' (118)
_ Z P¢m¢T¢€¢T€¢q¢m¢8¢ _ TP¢€¢T¢W¢Tm¢qT€¢S¢
w—(€c—€m —2in)  w — (€ — € + 2in)
The triplet eigenvalue problem reads
(2T c,(2T
Oab cd = (Ga + 6b)(sac(sbd + <CLbHCd> ( aT(bTC‘)TdT WngTcidT)’ (119&)
.. (2T (2T
3Bupij = (abllig) + (W ST, — Wl ), (119b)
2T 2T
Dy = —(& + €;)0idju + (ijllkl) + ( ;g(TkT)lT W;;k:h) (119¢)

The singlet block is worked out as

OaTbL’Cle - C‘UbTchdL
V14 dap V1 + Ocq
_ (ea + 6b)(sacébd + EaTbL!Cle - Eale7chi 120
V14 6ap V14 dcq (120)
(éa + €5)0acOpa + (abled) + (ablde) + WP —wolD) el e

arby,crdy byay,crdy ayby,crdy bray,crdy

VI 0aoV/1 + 0uq

1
Cab,cd =

Hence, the singlet eigenvalue problem is

(€a + €b)0acOpa + {ablcd) + (ab|dc)
V14 0apV1+ 0cd

"Cab,ed = (121a)
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(ablij) + (ablji)

'Bopii = , 121b
b V14 bap/1+ 055 ( )
lDide _ 7(61‘ + Gj)(sik(;jl + <Z]|kl> + <Z]|lk> . (1210)

V1+0iVI+ 0k

F. Dynamic GW kernel

For the sake of conciseness, only the kernel matrix elements will be reported in this section. Note that the first-order
part of the kernel will also be removed as it has already been spin-adapted in Sec. VII B. The triplet kernel reads
3=pp =pp _ ik VMlj v MjkWM[;)l, Ml::ki,l/Mjlvu - Ml:j,l/MilvV
=i (=w) = ity (7@) = _IZ [ —€;—€e+Q,—3in)  w—(—¢ — e +Q, — 3in)
Mige, My, — Mye oMy, Mg, My — My My
w—(—€—€g+Q, —3n) w—(—€¢ —e+Q, —3in)

(122)

The two remaining blocks are very similar, i.e., they just have an additional factor 2 with respect to their spinorbital
counterpart. The singlet matrix elements are

1=pp (7&]) — =PpP. (7w) Z |: ik,v lj v+ M Mlz vy M;Ck’L v Miiw + ng Mty
ikl R 1/1—1—(513\/14—(5;C -6 —ag+Q,—-3in)  w—(—€—e+Q, —3in)
M“f VMZ] v + Mjkvl’Mli,u Mkz VM Ly + Mk:j VMilaV

123
w—(—€—€+Q, —3in) w—(—€ —e+Q, — 3in) (123)



26
VIII. RESULTS

This section gathers some additional results to complement the discussion contained in the main manuscript. Table
I shows the pp-RPA double ionization potentials (DIPs) obtained with evGW and qsGW quasiparticle energies and
the corresponding histogram of errors are displayed in Fig. 5. The evGW and qsGW were implemented following the
scheme of Ref. 11 and using a flow parameter s = 500, except for the HCI molecule where s = 100 was used to improve
evGW convergence. The MAE of ppRPAQevGW and ppRPAQqsGW are 1.74eV and 1.76 eV, respectively. Therefore,
self-consistency provides a slight improvement over the one-shot scheme (ppRPA@QGW in the main manuscript) and
its MAE of 1.96eV.

TABLE 1. DIPs (in eV) toward the singlet (left panel) and triplet (right panel) dication ground states in the aug-cc-pVTZ basis
set computed at the pp-RPA level using evGW and qsGW quasiparticle energies.

Singlet DIPs Triplet DIPs
Molecule ppRPAQevGW ppRPAQqsGW ppRPAQevGW ppRPAQqsGW
H>O 44.76 44.77 44.17 44.27
HF 54.59 54.98 52.37 52.79
Ne 68.97 69.52 66.28 66.86
CH4 40.88 40.70 40.18 39.99
NH3 38.33 38.22 41.16 41.06
CcO 42.58 41.82 41.84 41.67
P 44.00 43.20 46.04 45.47
BF 35.28 34.91 37.92 38.12
LiF 43.22 43.81 41.19 41.82
BeO 34.69 35.78 33.32 34.44
BN 36.74 37.34 35.59 36.17
Co 37.92 37.92 37.57 36.85
Cs 34.72 34.22 34.07 33.48
LiCl 32.36 32.37 30.98 31.00
Fo 44.59 44.78 44.35 44.54
HaS 32.79 32.71 34.10 34.00
PH; 32.26 32.14 33.32 33.16
HC1 38.68 38.65 37.21 37.18
Ar 46.26 46.22 44.54 44.50
SiHy4 33.71 33.54 33.49 33.31
CH-,0O 34.04 34.34 37.50 38.07
CO2 38.76 38.80 38.34 38.36
BH; 37.63 37.48 36.34 36.18
MSE 1.71 1.70 1.71 1.77
MAE 1.71 1.70 1.76 1.82
RMSE 2.00 2.12 2.15 2.32
SDE 1.06 1.30 1.33 1.53
Min 0.11 0.26 -0.55 -0.35
Max 3.91 4.29 4.47 4.89

Secondly, the effect of the Tamm-Dancoff approximation (TDA) is investigated by computing the DIPs within this
approximation for three different kernels: ppRPAQHF, static GF(2) kernel [ppBSEQGF(2)] and static T-matrix kernel
[ppBSEQGT]. The corresponding results and histogram of errors are shown in Fig. 6 and Table II, respectively. These
results complement the TDAQ@QppBSEQGW results of the main text. In the four cases, the TDA leads to an increase
of the MSE, i.e., to an increase of the DIPs on average. Hence, if the full pp-BSE scheme has a negative MSE [as for
ppBSEQGW and ppBSEQGF(2)], the TDA leads to a decrease in MAE. On the other hand, if the full ppBSE scheme
has a positive MSE [as for ppRPA@QHF and ppBSEQGT], the TDA worsens the MAE.
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FIG. 5. Histogram of the errors (with respect to FCI) for the singlet and triplet principal DIP of 23 small molecules in the
aug-cc-pV'TZ basis set at the pp-RPA level using evGW and qsGW quasiparticle energies.

TABLE II. DIPs (in V) toward the singlet (left panel) and triplet (right panel) dication ground states in the aug-cc-pVTZ

basis set computed at the pp-BSE level using various static kernels: RPAQHF, GF(2) and T-matrix.

Singlet DIPs

Triplet DIPs

TDA TDA TDA TDA TDA TDA
Molecule ppRPA@QHF ppBSEQGF(2) ppBSEQGT ppRPAQHF ppBSEQGF(2) ppRPAQGT
H>O 47.36 38.20 42.30 46.36 36.43 41.27
HF 58.15 45.94 51.60 55.82 42.61 49.06
Ne 73.11 60.99 66.37 70.32 57.26 63.37
CH4 41.19 38.10 39.28 40.46 37.28 38.52
NH; 39.82 34.49 36.60 42.12 36.20 38.95
CcO 44.16 42.35 42.58 42.67 41.31 41.51
Ns 46.35 43.53 44.30 46.79 43.48 44.68
BF 35.17 35.62 34.99 39.36 37.13 37.62
LiF 47.06 34.26 40.95 44.91 30.86 38.62
BeO 36.76 26.50 32.17 35.28 23.77 30.47
BN 36.34 31.40 33.42 35.19 29.84 32.25
Cq 37.58 37.10 36.70 36.50 35.88 35.61
CS 35.00 33.61 33.86 34.31 32.74 33.11
LiCl 33.37 29.87 31.41 31.93 28.10 29.91
Fo 48.93 43.01 44.91 48.66 40.52 44.37
H>S 33.10 31.58 31.97 34.28 32.08 32.89
PH3; 32.22 31.25 31.37 33.29 31.95 32.30
HCl 39.38 36.53 37.59 37.84 34.72 35.98
Ar 47.34 44.06 45.28 45.57 42.09 43.47
SiH4 33.78 32.69 32.94 33.55 32.53 32.72
CH-20 35.80 31.44 32.97 38.45 33.74 35.85
CO2 40.37 38.19 38.69 39.91 36.63 37.99
BH; 37.61 36.67 36.61 36.20 35.23 35.21
MSE 3.08 -1.38 0.43 2.92 -2.18 0.14
MAE 3.08 1.75 0.60 2.97 2.19 0.69
RMSE 3.74 2.51 0.74 3.77 3.09 0.83
SDE 2.16 2.15 0.62 2.44 2.23 0.84
Min 0.64 -5.74 -1.56 -0.57 -7.66 -1.49
Max 7.67 1.12 1.50 8.13 0.06 1.27

Appendix A: Gorkov-Hedin equations

The aim of this section is to derive a GW-like approximation to the ee anomalous self-energy. This can be done
by extending the conventional Hedin equations [12] to the Gorkov propagator [13]. This derivation has already been
done in the PhD manuscript of Essenberg [14] but it is reported here for the sake of completeness. The anomalous
self-energies are defined through the Gorkov-Dyson equation

G(11") = Go(11") + /d(zz’) Go(12) [2(22") + U(22)] G(2'1"),

(A1)
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FIG. 6. Histogram of the errors (with respect to FCI) for the singlet and triplet principal DIP of 23 small molecules in the
aug-cc-pVTZ basis set computed at the pp-BSE level using various static kernels: ppRPAQHF, GF(2) and T-matrix.

where the Gorkov propagator and self-energy are

Ghe(lll) th(ll/) Ehe(ll/) Zhh(ll/)
N (A
G(ll ) - <Gee(11/) Geh(lll) 2(11 ) - Eee(11/) Eeh(lll) . (AZ)
The equation of motion for G leads to the following expression of the self-energy [1]
. . v(2477;34'~ 0 _

$(22) = —i / aEY) lim, < (247 3347) o2 4,++)) Go(4'3:43)G(3'2), (A3)

in terms of the external potential
Ueh(22)) 0
n o
ve)= (" ). (A1)

and a generalized two-body Green’s function defined as

o TR UB@B @) BRI (1)
G2(12:12) = (7 (TolT [(&(1)&*(2)&*(2’)&@') @(1)&*(2)@(2’)&(1’))] o). (45)

This equation of motion has been derived for the following Hamiltonian H in the presence of a potential u (t)
H'(t)=H+U({)
= /d(X1X1/) & (x)h(x1x1 ) (x10) + % // d(xixax1%2) F (1) (32) 0 (31325 30752 ) (321 ) (617 (A6)
+ / d(xyx1/) T (%1 ) U (%1 %105 £) b (x1/).

The key step of Hedin’s derivation is to use the link between the two-body Green’s function and the response of the
one-body Green’s function to an external potential. This is known as the Schwinger relation [15] and it can be easily
generalized to the Gorkov propagator

5G(3'3)

Iof. _
G2(28:23) = 5 oy

+ G (22")G(3'3). (A7)

Once injected in the self-energy expression of Eq. (A3), the second term yields

<v(12; 1'2/7)Ghe(2'2) 0 ) '

0 —v(1'2; 12'F)Ghe(2'2) (A8)

Tu(11) = —i [ d(22') lim
w(11) =i [ de2) im
The upper-left block is the usual Hartree self-energy while the lower-right block is the corresponding Hartree term of
Yl [16]. Therefore, the remaining self-energy term, corresponding to the functional derivative in the Gorkov-Schwinger
relation, accounts for the missing static terms, i.e., the exchange (x) term of the normal self-energy and the Bogoliubov
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(B) term of the anomalous self-energies, as well as the normal and anomalous correlation (c) self-energies. This
self-energy can be transformed into the following form

N s rar gy i ((0(12;372'7F) 0 L OGTH(4'T)
S0 = = fatza ) i (O ) gy (49
using
§G(12) , , 0G1(4'4)

Before introducing the inverse dielectric matrix, we take a side step to look at the simplest approximation of the
reducible vertex I'

6G(11")

(A11)

This approximation corresponds to discarding the self-energy in the expression of G~ = G, ! U - =. Hence, only
the derivative of the potential remains and it yields

o [0(127)6(172) 0
I(12;12) = < 0 _5(125(1'2) ) (A12)
The corresponding self-energy is
N ror i e (0(12;321F) 0 Lo [(6(4/2)5(172") 0
. P v(12;3/1'T) 0 (10
= 1/d(23 )61_1{(1)1+ < 0 (32 11) G(3'2) 0 —1 (A14)

_ - v(12;2'1'T)GPe(2'2)  —v(12;2'1F)GPP(2/2)
- I/dm ) shimm, <—v(2'1’+;12)GCC(2’2) 0(2'17F;12)Geh(2/2) ) (A15)
This yields the two missing static terms, i.e., the exchange normal self-energy and the Bogoliubov anomalous self-
energy [17]. Therefore, this vertex approximation in the Gorkov formalism leads to the Hartree-Fock-Bogoliubov
equations while the corresponding approximation applied to a formalism considering only GP® leads to the Hartree-Fock
approximation.

Going back to the self-energy expression the next step in Gorkov-Hedin’s derivation is to introduce a chain rule with
respect to the total potential V1e(4’4) = U°h(4/4) + $he(4/4)

i / a(2325') lim, (v(12;032’+) 32 - )G 5Ueh ;’2 /;)
o (O Jom e
4 / 42573 tim (v(12;032/+) 32 o )G e 42)%
= 1/d(232’3’)5£161+ (W(lg;?"” _W(§4; 14,))G(33’)f‘(3’4; 14"
where the irreducible vertex and the screened interaction has been introduced as
-1
r(2;12) = —W, (A17)

and

W(12;1'2) = /d(33’)v(13; 1'3")e1(23';2'37), (A18)
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where the inverse dielectric matrix is

sVhe(11)
H12;12) = . A19
< U%12) = Sra g (A419)
The screened interaction admits the same Dyson equation as usual
W(12;1'2") = v(127;1'2") — iW (15; 1’5’)£(4’5’; 45)v(24;2'4"), (A20)
where the irreducible electron-hole correlation function is
N SGPe(11)
L(12;1'2) = ———~. A21
(121%) = S (A21)
Its expression can be extracted from the following relation
6G(3'3) G~ (4'4) -
— = —G(34)—=—2G(43) = G(34T'(4'2;42)G (4 A22

where one can see that the expression of L is more involved than in the usual Hedin equations because it additionally
involves the anomalous Green’s functions.
Finally, an expression for the matrix irreducible vertex function is needed

[(4'2';42) = —w
B J Veh(4/4) 0 I2(4'4)
“s (0 ven)| e
_(6(4'2)8(42") 0 X (4'4) 5Geh(55')  X(4'4) 6GM(55)
_( 0 —6(4’2)6(42’)> 5Geh(557) §Veh(227) T §GBh(557) §Veh(227)

5% (4'4) §Gee(55")  0X(4'4) 6GN(55)
5Gee(55') aVeh(227) T 6Geh(55') GV eh(227)
B (5(4/2)5(42’) 0 )
- 0 —6(4'2)6(42")
53 (4/4)
5G°h(55')
63(4'4)

5X(4'4)
5GP (55/)
53(4'4)
5GN(55')

[G(56)T'(22'; 66')G(6'5")]" + [G(56)T(22; 66")G(6'5" )™

[G(56)T'(22'; 66')G(6'5)]° + [G(56)T(22; 66")G(6'5)]™,

where the notation [GT'G] means the ee matrix element of the product matrix. Due to the chain rule with respect to
the Green’s functions, this expression is much more cumbersome than the one of Hedin’s equations.

This section is concluded by computing the first approximation of 3 that stems from Gorkov-Hedin’s closed set of
equations. The first non-trivial irreducible vertex approximation is

[(42/;42) = <5<4/2)05(42I) _s( 4,2()) 5( 42,)). (A23)
This leads to the following self-energy
(1) = —i/d(33'44’) (W(lé/;w 7W(§4; 14,)>G(33’)(m
i / a(33/44') <W(1§;34) _W(??4; 14,)>G(33’)(6(3/4/2)5(1/4) _5(3,49)5(1,4))
—; / d(33') (W(l?z;;iil’) W (301/;13,)>G(33’) ((1) _01> (A24)

. o W(13:31)GP(33)) —W (13/;31)GM"(33)
=1 / d(33') (—W(Bl’;13’)Gee(33’) W(31;13)Gh(33) )

[ sy s (G ~G)
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FIG. 7. Diagrammatic representation of the dynamically screened interaction W in the presence of an external pairing field.
This corresponds to a resummation of bubble diagrams with two different types of bubbles. The dashed lines represent the

Coulomb interaction, the solid lines with arrows denote the one-body propagator while the double-arrowed propagators represent
G" and G*°.

The GW self-energy is recovered in the upper-left block while the anomalous self-energies are also of the GW form.
The vertex approximation needs also to be applied to L, this is usually referred to as the inner-vertex approximation.
The resulting electron-hole correlation function is

L(3y32) = 26°G3) (GEoT@; 42)G(43))he

~ §Vhe(22)
he
_ (G(3’2’) (é _1>G(23))
= G"(3'2)G"(23) — G™(3'2')G°(23)

The first terms of the screened interaction corresponding to this L are represented diagrammatically in Fig. 7. This
closely resembles the standard bubble resummation of GW but now two types of bubbles need to be considered.
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