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The Bethe-Salpeter equation has been extensively employed to compute the two-body electron-hole propagator
and its poles which correspond to the neutral excitation energies of the system. Through a different time-
ordering, the two-body Green’s function can also describe the propagation of two electrons or two holes.
The corresponding poles are the double ionization potentials and double electron affinities of the system.
In this work, a Bethe-Salpeter equation for the two-body particle-particle propagator is derived within the
linear-response formalism using a pairing field and anomalous propagators. This framework allows us to
compute kernels corresponding to different self-energy approximations (GW , T -matrix, and second-Born) as
in the usual electron-hole case. The performance of these various kernels is gauged for singlet and triplet
valence double ionization potentials using a set of 23 small molecules. The description of double core hole
states is also analyzed.

I. INTRODUCTION

Despite its conceptual simplicity, the electron-hole (eh)
random-phase approximation (RPA), introduced by Bohm
and Pines in the context of the uniform electron gas,1–5

has proven effective in describing a variety of physical
phenomena.6 These include collective excitations (plas-
mons) in metals and semiconductors,7 non-covalent inter-
action energies,8–10 and screening of the Coulomb interac-
tion due to density fluctuations.7,11–13 However, eh-RPA
falls short in accurately describing molecular excitations
and excitons in insulators,7,14–17 highlighting the need for
methods that go beyond eh-RPA.

Since its inception, the eh-RPA equations have been de-
rived through various formalisms such as Rowe’s equation
of motion (EOM),18–21 time-dependent density-functional
theory (TDDFT),22,23 and the Bethe-Salpeter equation
(BSE).24–27 Each of these frameworks offers a pathway
to devising approximations that extend beyond RPA.
Amongst these, TDDFT has been by far the most popular,
though it suffers from well-documented drawbacks.28–31

In particular, TDDFT lacks systematic improvement, as
progressing up Jacob’s ladder of exchange-correlation
functionals32 does not guarantee higher accuracy (see
Ref. 33 for a recent review). In contrast, EOM can
be systematically improved by increasing the rank of
the excitation operator or moving beyond a mean-field
reference.20,21 For example, EOM coupled-cluster (EOM-
CC) is the method of choice for highly accurate excitation
energies, albeit at a significant computational cost.34–38

Within the BSE formalism, eh-RPA corresponds to
computing the two-body eh propagator L, known as the
polarization propagator, using the simplest approximation
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FIG. 1. Diagrammatic representation of the eh propagator L
(top) and pp propagator K (bottom) at the RPA level. The
dashed lines represent the Coulomb interaction and the solid
lines with arrows denote the one-body propagator. The first
and second-order exchange terms have not been represented
but should be included in KRPA.

of the kernel, namely, the Coulomb kernel. To go beyond
eh-RPA, one must improve the kernel using, for example,
perturbation theory or Hedin’s equations.7 For exam-
ple, the kernel derived from the popular GW self-energy
approximation11–13,39 has been highly successful in com-
puting low-lying excited states of various natures (charge
transfer, Rydberg, valence, etc) in molecular systems
with a very attractive accuracy/cost ratio.17,26,27,40–51

Perturbative kernels based on expansions in the Coulomb
interaction, or in alternative effective interactions like the
T -matrix, have also been explored.52–56

The eh-RPA possesses an analog known as particle-
particle (pp) RPA or pairing vibration approximation.57

This method provides the simplest beyond-independent-
particle approximation to compute the two-body pp prop-
agator K.7,58 Their close relationship is elegantly illus-
trated in the diagrammatic language of many-body per-
turbation theory, as depicted in Fig. 1.59 Both approx-
imations involve the resummation of specific classes of
diagrams: bubbles for eh-RPA and pp ladders for pp-RPA.
The pp propagator captures complementary information
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to the polarization propagator as its poles correspond
to the double ionization potentials (DIPs) and double
electron affinities (DEAs) of the N -electron system.

In a recent series of papers, Weitao Yang’s group has
shown that pp-RPA offers an alternative approach to ac-
cessing excited states in N -electron systems.60–66 Specif-
ically, excitation energies of the N -electron system can
be computed as the difference between DEAs from the
corresponding (N − 2)-electron reference state. (For a
complementary starting point using the (N + 2)-electron
system, see Refs. 65 and 67.) Strategies along these lines
have already been applied within coupled-cluster (CC)
theory68–74 and is also related to the spin-flip method for
excited states.75–81 Unlike linear-response-based methods,
this approach avoids bias toward the ground state because
the ground and excited states are obtained within the
same calculation. Yang and co-workers have shown that
pp-RPA has some advantages over eh-RPA and TDDFT,
such as the ability to describe charge transfer,60,64 doubly
excited states,60 or conical intersections.63 However, the
accuracy of pp-RPA is not always satisfactory, motivating
the development of methods that go beyond pp-RPA.

As with eh-RPA, pp-RPA can be derived and extended
through various theoretical frameworks. The EOM in
the (N + 2)- and (N − 2)-electron sectors of Fock space
leads to pp-RPA and, as for the N -electron case, the
systematically-improvable DIP-EOM-CC and DEA-EOM-
CC formalisms can provide reliable reference energies. On
the other hand, improving pp-RPA within the pairing-
field TDDFT framework is even more challenging than in
standard TDDFT.82,83 This difficulty arises because the
pairing-field TDDFT kernel is obtained by differentiating
the exchange-correlation functional with respect to the
anomalous density. However, the number of function-
als for the anomalous density remains quite limited84–86

and, to the best of our knowledge, these functionals have
not been employed to derive kernels within pairing-field
TDDFT. Finally, the pp channel of the BSE has been
much less explored and developed than its eh counter-
part. Although the BSE for the pp propagator has been
reported in the literature, its kernel lacks a simple form.
In fact, it is expressed as a Dyson equation of the eh-BSE
kernel, making it difficult to apply in practice.87

The main result of this paper is to present an alter-
native expression of the pp-BSE kernel by considering
pairing fields and anomalous Green’s functions. This new
expression is fully analog to the eh-BSE kernel as both
are expressed as the derivative of a self-energy with re-
spect to a propagator. The derivation of this expression is
detailed in Sec. II C after discussing correlation functions
and their link to response functions in Sec. II A and II B,
respectively. The last subsection of Sec. II addresses the
finite orbital basis formulation of the pp-BSE. Then, the
pp-BSE analogs of the usual eh-BSE kernels [GF(2),88–91

GW ,7,11–13 and pp T -matrix92–96] are derived in Sec. III
and their specificities are discussed. Section IV reports
the computational details of our implementation while our
numerical results are presented in Sec. V. Some concluding

remarks are provided in Sec. VI.

II. THEORETICAL FRAMEWORK

A. Correlation functions

The equilibrium time-ordered two-body Green’s func-
tion (at zero temperature) is defined as

G2(12; 1
′2′) = (−i)2

〈
ΨN

0

∣∣T̂ [ψ̂(1)ψ̂(2)ψ̂†(2′)ψ̂†(1′)]
∣∣ΨN

0

〉
,

(1)
where 1 is a space-spin-time composite variable (1) =

(x1, t1) = (r1, σ1, t1), T̂ is the time-ordering operator and
|ΨN

0 〉 is the exact N -electron ground state. The annihi-
lation and creation field operators are in the Heisenberg
representation, that is, ψ̂(1) = eiĤt1 ψ̂(x1)e

−iĤt1 , where
Ĥ is the non-relativistic electronic Hamiltonian

Ĥ =

∫
d(x1x1′) ψ̂

†(x1)h(x1x1′)ψ̂(x1′)

+
1

2

∫∫
d(x1x2x1′x2′)

× ψ̂†(x1)ψ̂
†(x2)v(x1x2;x1′x2′)ψ̂(x2′)ψ̂(x1′). (2)

The 4-point Coulomb interaction is defined as

v(x1x2;x1′x2′) =
δ(x1x1′)δ(x2x2′)

|r1 − r2|
(3)

and h(x1x1′) is the one-body Hamiltonian.
The two-body Green’s function describes the propa-

gation of two particles. These particles can be either
electrons or holes depending on the ordering of the time
variables. For example, if t2, t2′ > t1, t1′ , then G2 reduces
to

G2(12; 1
′2′)

= (−i)2
〈
ΨN

0

∣∣T̂ [ψ̂(2)ψ̂†(2′)
]
T̂
[
ψ̂(1)ψ̂†(1′)

]∣∣ΨN
0

〉
(4)

and describes the propagation of an electron-hole pair.
The eh correlation function L associated with G2 is ob-
tained by removing the uncorrelated part of Eq. (4), that
is,

L(12; 1′2′) = −G2(12; 1
′2′) +G(11′)G(22′), (5)

where we have introduced the one-body Green’s function

G(11′) = (−i)
〈
ΨN

0

∣∣T̂ [ψ̂(1)ψ̂†(1′)
]∣∣ΨN

0

〉
, (6)

which describes the propagation of either a hole or an
electron.

One can further assume that the electron and hole
forming the pair are created and annihilated simultane-
ously by setting t2 = t+2′ and t1 = t+1′ (where t+ = t + η
with η an infinitesimally small positive shift) such that
L(12; 1′2′) depends only on the time difference t2 − t1.
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FIG. 2. Diagrammatic representation of the eh-BSE, as defined in Eq. (19).

The frequency-space representation of this correlation
function is

L(x1x2;x1′x2′ ;ω) =
∑
n>0

LN
n (x2x2′)R

N
n (x1x1′)

ω − (EN
n − EN

0 − iη)

−
∑
n>0

LN
n (x2x2′)R

N
n (x1x1′)

ω − (EN
0 − EN

n + iη)
,

(7)

with amplitudes

LN
n (x1x1′) =

〈
ΨN

0

∣∣ψ̂†(x1)ψ̂(x1′)
∣∣ΨN

n

〉
, (8a)

RN
n (x1x1′) =

〈
ΨN

n

∣∣ψ̂†(x1)ψ̂(x1′)
∣∣ΨN

0

〉
, (8b)

where EN
n and |ΨN

n 〉 are the energy and wave function
of the nth excited state (n = 0 being the ground state)
of the N -electron system. This representation evidences
that L is directly linked to the excitation energies of the
N -electron system.

If instead we impose the following time ordering,
t1, t2 > t1′ , t2′ , then G2 becomes

G2(12; 1
′2′)

= (−i)2
〈
ΨN

0

∣∣T̂ [ψ̂(1)ψ̂(2)]T̂ [ψ̂†(2′)ψ̂†(1′)
]∣∣ΨN

0

〉
, (9)

and describes the propagation of two electrons. Simi-
larly, the time ordering t1′ , t2′ > t1, t2 would describe the
propagation of two holes. In this case, one defines the
associated correlation function as7,97

2K(12; 1′2′) = −G2(12; 1
′2′) +Ghh(12)Gee(2′1′), (10)

where the uncorrelated part involves the hole-hole (hh)
and electron-electron (ee) anomalous propagators

Ghh(12) = (−i)
〈
ΨN

0

∣∣T̂ [ψ̂(1)ψ̂(2)]∣∣ΨN
0

〉
, (11a)

Gee(2′1′) = (−i)
〈
ΨN

0

∣∣T̂ [ψ̂†(2′)ψ̂†(1′)
]∣∣ΨN

0

〉
. (11b)

Note that, because the wave function |ΨN
0 〉 has a fixed

number of particles, the uncorrelated part vanishes in this
case.

Here again, the pairs are assumed to be created and
annihilated instantaneously, i.e., t1 = t+2 and t1′ = t+2′ .
The Fourier transform of the pp propagator with respect
to t1 − t1′ yields

K(x1x2;x1′x2′ ;ω) =
1

2

∑
n

LN+2
n (x1x2)R

N+2
n (x′

1x
′
2)

ω − (EN+2
n − EN

0 − iη)

− 1

2

∑
n

LN−2
n (x′

1x
′
2)R

N−2
n (x1x2)

ω − (EN
0 − EN−2

n + iη)
,

(12)

with amplitudes

LN+2
n (x1x2) =

〈
ΨN

0

∣∣ψ̂(x1)ψ̂(x2)
∣∣ΨN+2

n

〉
, (13a)

RN+2
n (x1x2) =

〈
ΨN+2

n

∣∣ψ̂†(x1)ψ̂
†(x2)

∣∣ΨN
0

〉
, (13b)

LN−2
n (x1x2) =

〈
ΨN

0

∣∣ψ̂†(x1)ψ̂
†(x2)

∣∣ΨN−2
n

〉
, (13c)

RN−2
n (x1x2) =

〈
ΨN−2

n

∣∣ψ̂(x1)ψ̂(x2)
∣∣ΨN

0

〉
, (13d)

In the previous expressions, EN±2
n and |ΨN±2

n 〉 are the
energy and wave function of the nth excited state of the
(N ± 2)-electron system. This highlights the direct link
between the pp correlation function and the DIPs and
DEAs of the N -electron system.

B. Response functions

In the previous section, L has been introduced as a
correlation function but it can alternatively be regarded
as a generalized response function.7 This is evidenced by
the Schwinger relation25,39

L(12; 1′2′) =
δG(11′; [U ])

δU eh(2′2)

∣∣∣∣
U=0

, (14)

where the time-dependent external potential

Ûeh(t) =

∫
d(x1x1′) ψ̂

†(x1)U
eh(x1x1′ ; t)ψ̂(x1′) (15)

has been added to the Hamiltonian (2) and U eh(11′) =
U eh(x1x1′ ; t1)δ(t1 − t1′). The notation G(11′; [U ]) means
that the propagator is computed in the presence of the
external potential. However, this dependence is not ex-
plicitly written in the following for the sake of conciseness.
The Schwinger relation shows that knowing the eh corre-
lation function is equivalent to knowing the response of
the one-body Green’s function with respect to an external
potential.

The pp correlation function can also be expressed as a
functional derivative within the linear-response formalism.
This is done by considering the response of an anomalous
Green’s function to a time-dependent pairing potential

Ûpp(t) =
1

2

[∫
d(x1x1′) ψ̂(x1)U

hh(x1x1′ ; t)ψ̂(x1′)

+

∫
d(x1x1′) ψ̂

†(x1′)U
ee(x1x1′ ; t)ψ̂

†(x1′)

]
.

(16)
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FIG. 3. Diagrammatic representation of the pp-BSE [see Eq. (26)]. The rightmost K0 has been replaced by its first term [see
Eq. (25)] using the antisymmetry of the kernel.

Note that, in the presence of this perturbation, the Hamil-
tonian does not commute with the particle number oper-
ator. Therefore, in the presence of the pairing potential,
the wave function breaks the particle-number symmetry
and the anomalous Green’s functions do not vanish any-
more. Following a derivation similar to the one of Eq. (14)
(see Supplementary Material of Ref. 97), one can obtain

K(12; 1′2′) =
δGee(1′2′)

δUhh(12)

∣∣∣∣
U=0

, (17)

with Uhh(12) = Uhh(x1x2; t1)δ(t1 − t2). This expression
shows that the response of an anomalous propagator to
a pairing field (evaluated at U = 0) is non-zero even
if the equilibrium Hamiltonian preserves the number of
particles. Therefore, through their derivatives, anomalous
quantities can be useful even in a number-conserving
framework. This was already highlighted in pairing-field
TDDFT,82,83 and will be further evidenced by the pp-
BSE.

C. Bethe-Salpeter equations

The usual eh-BSE will be briefly reviewed before dis-
cussing in more depth its pp counterpart. The eh-BSE
is derived starting from the response-function form of L
[see Eq. (14)] and the Dyson equation for the one-body
Green’s function

G−1(12) = G−1
0 (12)− U eh(12)− Σ(12), (18)

where G0 is the non-interacting one-body Green’s func-
tion and Σ is the exact self-energy containing Hartree,
exchange, and correlation effects.7 This leads to a Dyson
equation for L, which reads

L(12; 1′2′) = L0(12; 1
′2′)

+

∫
d(343′4′)L0(13

′; 1′3)Ξeh(34; 3′4′)L(4′2; 42′),

(19)

where L0(12; 1
′2′) = G(12′)G(21′) is the non-interacting

eh propagator and

Ξeh(34; 3′4′) =
δΣ(33′)

δG(4′4)
(20)

is the eh effective interaction kernel. This equation is
represented diagrammatically in Fig. 2. Equation (19)

shows that the two-body propagator depends on L0 and
Ξeh. Hence, in practice, two approximations have to
be made, namely the choice of the one-body Green’s
function that enters in L0 and the self-energy considered
to compute Ξeh.

Now that the pp propagator has also been expressed in
a response-function form [see Eq. (17)], a similar deriva-
tion can be performed for the pp channel. Below, only the
main steps of the derivation of the pp-BSE are discussed
but a fully detailed derivation is provided in the Supple-
mentary Material. As a preliminary step, one introduces
the Gorkov propagator98

G(11′) =

(
Ghe(11′) Ghh(11′)
Gee(11′) Geh(11′)

)
, (21)

which gathers the normal one-body propagator Ghe ≡ G
[see Eq. (6)], the anomalous propagators [see Eqs. (11a)
and (11b)], as well as the eh one-body propagator related
to the normal propagator as Geh(11′) = −Ghe(1′1). This
matrix formalism is known as Nambu’s formalism.99 The
derivation of the pp-BSE then starts from Eq. (17) and
relies on the following relation97

δGee(1′2′)

δUhh(12)

∣∣∣∣
U=0

= G(31′)
δ(G−1)ee(33′)

δUhh(12)

∣∣∣∣
U=0

G(3′2′),

(22)
that stems from the differentiation of G−1.

This set the stage for the introduction of the Gorkov-
Dyson equation in the presence of the external pairing
potential

G−1(11′) = G−1
0 (11′)

−
(

Σhe(11′) Σhh(11′) + U ee(11′)
Σee(11′) + Uhh(11′) Σeh(11′)

)
, (23)

which stems from the time derivative of G (see Ref. 97 for
a detailed discussion). This equation defines the four com-
ponents of the self-energy in Nambu’s formalism. Using
Eq. (23), the derivation can be pursued and one gets

K(12; 1′2′) =−G(31′)
δUhh(33′)

δUhh(12)

∣∣∣∣
U=0

G(3′2′)

−G(31′)
δΣee(33′)

δUhh(12)

∣∣∣∣
U=0

G(3′2′),

(24)

where the first term in the right-hand side is recognized
to be the pp non-interacting propagator

K0(12; 1
′2′) =

1

2
[G(21′)G(12′)−G(11′)G(22′)]. (25)
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FIG. 4. Diagrammatic representation of the two direct second-
order terms contained in Σee. The dashed lines represent the
Coulomb interaction, the solid lines with arrows denote the
one-body propagator while the double-arrowed propagators
represent Ghh and Gee.

Equation (24) is transformed into a Dyson equation
using the derivative chain rule. This leads to four different
terms because the chain rule has to be performed with
respect to the four components of G. However, only one
of them is non-zero for a number-conserving system (i.e.,
at U = 0) and this finally leads to the pp-BSE

K(12; 1′2′) = K0(12; 1
′2′)

−
∫

d(33′44′)K(12; 44′)Ξpp(44′; 33′)K0(33
′; 1′2′), (26)

where the pp kernel,

Ξpp(44′; 33′) =
δΣee(33′)

δGee(44′)

∣∣∣∣
U=0

, (27)

has been introduced. The pp-BSE, defined in Eq. (26), is
represented diagrammatically in Fig. 3. As one can readily
seen from Eqs. (25) and (27), to compute K, one has to
choose G and the anomalous self-energy Σee to build K0

and Ξpp, respectively. This procedure is fully analog to
the eh-BSE equation as discussed previously. According
to the definition of Ξpp in Eq. (27), the approximate
expression of Σee must contain exactly one anomalous
propagator Gee for the derivative to be non-zero. To
illustrate this, we examine the two direct second-order
self-energy terms, with respect to the Coulomb interaction,
contributing to the anomalous self-energy Σee.100 These
diagrams are represented in Fig. 4. The diagram on the
right side possesses three anomalous propagators, thus, its
derivative necessarily vanishes when evaluated at U = 0.
In contrast, the first diagram has only one instance of
Gee, resulting in a non-zero kernel.

D. Eigenvalue problem

With the general pp-BSE now derived, the next step is
to reformulate it in a way suitable for implementation in
standard quantum chemistry software. This involves first
transforming the equations into frequency space, followed
by projection into a spinorbital basis. Here, the indices
i, j, k, l,m denote occupied spinorbitals, a, b, c, d, e are
virtual spinorbitals, and p, q, r, s corresponds to generic
spinorbitals. Finally, µ denotes a composite index ia

while ν corresponds to a composite index ij (with i < j)
or ab (with a < b).

Before performing the Fourier transform, we recall that
particle pairs are assumed to be created and annihilated
instantaneously, i.e., t2 = t+1 and t2′ = t+1′ . Hence, in
Eq. (26), K(12; 1′2′) and K0(12; 1

′2′) depend only on a
single time difference, namely, t1 − t1′ . However, in the
second term of the right-hand side of Eq. (26), the quan-
tities depend on two or three time differences. These
time-dependences are explicitly treated in the Supple-
mentary Material. The Fourier transform leads to the
following frequency-space pp-BSE

K(ω) = K0(ω)

−
∫

d(ω̄ω̃)

(2π)2
K(ω̃, ω)Ξpp(−ω̃,−ω̄, ω)K0(ω̄, ω). (28)

The two- and three-frequency Fourier transform are de-
fined in the Supplementary Material. As can be readily
seen, Eq. (28) cannot be inverted directly.

To circumvent this issue, we rely on the procedure of
Ref. 101 developed for the eh-BSE. The pp-BSE is recast
in an invertible form as

K(ω) = K0(ω)−K(ω)Ξ̃pp(ω)K0(ω), (29)

where the frequency-dependent kernel is

Ξ̃pp(ω) =

∫
d(ω̃ω̄)

(2π)2
(K−1)(ω)K(ω̄,−η, ω)

× Ξpp(−ω̃,−ω̄, ω)K0(−η, ω̃, ω)(K−1
0 )(ω). (30)

However, at this stage, the newly derived form is not yet
practical as the kernel depends on K and must therefore
be solved iteratively. Equation (30) is thus linearized
by substituting K by K0. It is worth mentioning that
if the initial kernel is static, i.e., Ξpp(ω̃, ω̄, ω) = Ξpp,
the approximate dynamic kernel remains unchanged, i.e.,
Ξ̃pp(ω) = Ξpp.

We now express the pp-BSE as an eigenvalue problem.
Once inverted and projected in a finite basis set, Eq. (29)
becomes

K−1
pq,rs(ω) = (K−1

0 )pq,rs(ω) + Ξ̃pp
pq,rs(ω), (31)

where the four-index tensors have been transformed into
matrices by defining composite indices. Finally, one can
show that finding the zeros of K−1(ω), that is, the DIPs
and DEAs, is equivalent to solving the following non-
Hermitian non-linear eigenvalue problem(

C(Ωn) B

−B† −D(−Ωn)

)
·
(
Xn

Y n

)
= Ωn

(
Xn

Y n

)
, (32)

where

Cab,cd(ω) = (εa + εb)δacδbd + iΞ̃pp
ab,cd(ω),

Bab,ij = +iΞ̃pp
ab,ij ,

Dij,kl(−ω) = −(εi + εj)δikδjl + iΞ̃pp
ij,kl(−ω),

(33)
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with the following restrictions on the indices: i < j, k < l,
a < b, and c < d. These three blocks will be referred
to as the ee-ee, ee-hh, and hh-hh blocks, respectively.
(In addition, note that Ξ̃pp

ab,ij is, in general, frequency-
dependent. However, for every kernel considered in this
work, this coupling block is found to be static.) Therefore,
if the kernel is static, Ξ̃pp

ij,kl(−ω) = Ξpp
ij,kl and Ξ̃pp

ab,cd(ω) =

Ξpp
ab,cd, finding the poles of K reduces to a generalized

linear eigenvalue problem. Note the close connection
between the static pp-BSE eigenvalue problem and the
pairing TDDFT equations derived by van Aggelen and
co-workers.82,83 This connection is fully analogous to the
one between eh-BSE and TDDFT.26,27

In both the dynamic and static cases, the problem can
be simplified by neglecting the (static) coupling block
B. This widespread approximation is referred to as the
Tamm-Dancoff approximation (TDA). In this case, one
ends up solving two independent Hermitian non-linear
eigenvalue problems for the ee and hh sectors

+C(Ωn) ·Xn = ΩnXn, (34a)
−D(−Ωn) · Y n = ΩnY n. (34b)

Finally, both the static and dynamic eigenvalue problems
can be spin-adapted to split them into independent prob-
lems of smaller size. The spin-adaptation is performed
and discussed in detail in the Supplementary Material.

E. Dynamical perturbative correction

As mentioned earlier, if the kernel is dynamic then
finding the poles of K requires solving a generalized non-
linear eigenvalue problem [see Eq. (32)]. Alternatively,
the dynamical effects can be perturbatively accounted for
in order to avoid the cumbersome non-linear procedure.
This is the choice that has been made in this work. In
addition, the dynamic perturbation is only considered
within the TDA. This dynamic perturbation has already
been presented in detail in Ref. 102 (see also Refs. 17 and
53) for the eh-BSE case and shall only be outlined here
for the hh sector. An analogous procedure exists for the
ee sector.

The matrix to diagonalize is decomposed into a static
and dynamic part D(ω) = D(0) + D(1)(ω). Then, the
static problem is first solved

D(0)Y (0)
n = −Ω(0)

n Y (0)
n , (35)

and the perturbative correction to the nth eigenvalue Ω
(0)
n

is computed as

Ω(1)
n = (Y (0)

n )† ·D(1)(−Ω(0)
n ) · Y (0)

n . (36)

Finally, the corrected eigenvalue is given by

Ωn = Ω(0)
n + ZnΩ

(1)
n , (37)

where the renormalization factor is

Zn =

[
1− (Y (0)

n )† · ∂D
(1)(−ω)
∂ω

∣∣∣∣∣
ω=Ω

(0)
n

· Y (0)
n

]−1

. (38)

III. APPROXIMATE KERNELS

Now that the general formalism has been discussed in
details, some practical approximations will be presented.
In particular, this section focus on kernel approximations.
As mentioned in Sec. II C, this is not the only approx-
imation made in practice as one must also choose an
approximate form for the one-body propagator G. The
effect of both sources of approximations will be gauged
in Sec. V.

The present section is divided into various subsections,
each corresponding to a given anomalous self-energy and
its associated kernel. First, we will show that considering
the static Bogoliubov self-energy leads to the ubiquitous
pp-RPA kernel. Then, three kernels that go beyond pp-
RPA will be presented. These are the direct analogs of
well-known kernels that have been considered for the eh-
BSE: a kernel based on a self-energy correct up to second
order in the Coulomb interaction and kernels based on
the GW and T -matrix self-energies. The corresponding
spin-adapted matrix elements for each of these kernels
are reported in the Supplementary Material.

A. The first-order Coulomb kernel

The perturbation expansion of Σee with respect to the
Coulomb interaction has only one first-order term which
reads100

Σee
B (11′) = −i

∫
d(33′) v(33′+; 11′++)Gee(33′), (39)

where

v(11′; 22′) = δ(12)
δ(t1 − t1′)

|r1 − r1′ |
δ(1′2′). (40)

The resulting kernel iΞpp
B (11′; 22′) = v̄(11′; 22′)/2 =

[v(11′; 22′) − v(11′; 2′2)]/2 is simply the anti-symmetric
Coulomb interaction. Hence, this is a static kernel that
can be used without any further approximation. Once
projected in a basis set, its matrix elements are simply
i(Ξpp

B )rspq = 〈pq||rs〉 = 〈pq|rs〉 − 〈pq|sr〉, where the two-
electron integrals in the spin-orbital basis are defined
as

〈pq|rs〉 =
∫∫

dx1dx2
ψp(x1)ψq(x2)ψr(x1)ψs(x2)

|r1 − r2|
. (41)

Note that here and throughout the manuscript, we assume
real orbitals. The corresponding matrix elements of the
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linear eigenproblem read

CRPA
ab,cd = (εa + εb)δacδbd + 〈ab||cd〉 ,

BRPA
ab,ij = 〈ab||ij〉 ,

DRPA
ij,kl = −(εi + εj)δikδjl + 〈ij||kl〉 ,

(42)

which is easily recognized to be the well-known pp-RPA
eigenvalue problem.

In the absence of instabilities, which corresponds in
this case to test the stability of the reference N -electron
state towards a (N ± 2)-electron state,103,104 the pp-RPA
problem yields two sets of eigenvalues: a set of posi-
tive eigenvalues corresponding to DEAs [(N +2)-electron
states], and a set of negative eigenvalues corresponding
to DIPs [(N − 2)-electron states].

B. The second-order Coulomb kernel

As explained in Sec. II C, there are two second-order
direct terms in the perturbative expansion of Σee and
only one contributes to Ξpp. This self-energy diagram is
represented on the left side of Fig. 4. Σee also contains two
exchange terms and, for the same reason, only one yields
a non-zero kernel. Once added up with the first-order
term of Eq. (39), the second-order kernel reads100

Σee,(2)(11′) = −iW (2)(33′; 11′)Gee(33′), (43)

where the second-order effective interaction,

W (2)(33′; 11′) = v(33′; 11′)

− iv̄(34′; 14)L0(42; 4
′2′)v̄(2′3′; 21′), (44)

has been introduced. It corresponds to an antisym-
metrized Coulomb interaction “screened” up to second
order in the Coulomb interaction. The differentiation of
Σee,(2) with respect to Gee yields

iΞpp,(2)(11′; 22′) =
1

2
[W (2)(11′; 22′)−W (2)(11′; 2′2)].

(45)
Because this kernel is frequency-dependent, one must

either evaluate it at ω = 0 or the corresponding approx-
imate effective dynamic kernel has to be computed [see
Eq. (30)]. The first choice leads to

iΞ
pp,(2)
ab,cd =W

(2)
abcd −W

(2)
abdc, (46a)

iΞ
pp,(2)
ab,ij =W

(2)
abij −W

(2)
abji, (46b)

iΞ
pp,(2)
ij,kl =W

(2)
ijkl −W

(2)
ijlk, (46c)

where W (2)
pqrs is a short notation for W (2)

pqrs(ω = 0). The
matrix elements of the frequency-dependent effective in-
teraction are given by

W (2)
pqrs(ω) = 〈pq|rs〉+∑
me

[
〈pm||re〉 〈eq||ms〉
ω − (εe − εm − iη)

− 〈pe||rm〉 〈mq||es〉
ω − (εm − εe + iη)

]
. (47)

The dynamic kernel Ξ̃pp,(2) is discussed in the Supplemen-
tary Material.

C. The GW kernel

In the case of the eh propagator, the GW kernel is
arguably the most successful in the context of quantum
chemistry and condensed matter physics. Hence, a GW -
like kernel for the pp channel is a natural target but it
does require a GW -like self-energy approximation for Σee.
Such quantity can be obtained by generalizing Hedin’s
equations to the Gorkov propagator, as shown in Ref. 105.
For the sake of completeness, the derivation of Σee,GW is
also reported in the Supplementary Material.

The resulting self-energy expression is

Σee,GW (11′) = −iGee(33′)W (33′; 11′), (48)

and the associated kernel is

iΞee,GW (11′; 22′) =
1

2
[W (11′; 22′)−W (11; 2′2)], (49)

where W is the screened interaction computed at the
eh-RPA level

W (11′; 22′) = v(11′; 22′)

− iW (13; 23′)L0(4
′3′; 43)v(1′4; 2′4′). (50)

Note that, for notational convenience, we use the same no-
tation for W in Eq. (48) and for W in Eq. (49). However,
the first contains both normal and anomalous bubbles
and the latter only includes the normal bubbles as one
sets U → 0 according to Eq. (27).

We also note that contrary to the eh GW kernel where
one usually neglects the term δW/δG (which can be
shown to be of second-order in W ),56,93,106 this derivative
is effectively zero for the pp channel as the anomalous
propagator vanishes at U = 0. Another interesting prop-
erty of this kernel is that it justifies the ad hoc kernel
of Rohlfing and co-workers.107 Indeed, while in the eh
case only the exchange term is screened, the authors of
Ref. 107 argued that one has to screen both the Hartree
and exchange in the pp kernel using symmetry arguments.
Therefore, Eq. (49) provides a first-principle justification
for this choice.

In the static approximation, the matrix elements of the
GW kernel are

iΞpp,GW
ab,cd =Wabcd −Wabdc, (51a)

iΞpp,GW
ab,ij =Wabij −Wabji, (51b)

iΞpp,GW
ij,kl =Wijkl −Wijlk, (51c)

with Wpqrs = Wpqrs(ω = 0). The elements of the
dynamically-screened interaction are given by

Wpqrs(ω) = 〈pq|rs〉+
∑
µ

[
Mpr,µMsq,µ

ω − Ωµ + iη
− Mrp,µMqs,µ

ω +Ωµ − iη

]
,

(52)



8

where the transition densities are

Mpq,µ =
∑
ia

[Xia,µ 〈ap|iq〉+ Yia,µ 〈ip|aq〉]. (53)

Here, Xpq,µ, Ypq,µ, and Ωµ are the matrix elements of
the eigenvectors and the eigenvalues of the (direct) eh-
RPA problem, which is reported in the Supplementary
Material.

To conclude this subsection, the expression of the hh-hh
GW effective dynamic kernel matrix elements are reported

iΞ̃pp,GW
ij,kl (−ω) = 〈ij||kl〉

+
∑
µ

Mik,µMlj,µ −Mjk,µMli,µ

ω − (−εj − εl +Ωµ − iη)

+
∑
µ

Mki,µMjl,µ −Mkj,µMil,µ

ω − (−εi − εk +Ωµ − iη)

+
∑
µ

Mik,µMlj,µ −Mjk,µMli,µ

ω − (−εi − εl +Ωµ − iη)

+
∑
µ

Mki,µMjl,µ −Mkj,µMil,µ

ω − (−εj − εk +Ωµ − iη)

(54)

The ee-hh and ee-ee blocks are reported in the Supple-
mentary Material.

D. The T -matrix kernel

Finally, the kernel based on the pp T -matrix effective
interaction is discussed. The T -matrix anomalous self-
energy approximation has been derived in a previous study
by some of the authors97 (see also Ref. 108). However, the
associated pp kernel vanishes in the normal phase. Hence,
there is no kernel of first order in T for the pp-BSE. This
could have been anticipated as the pp T -matrix is already
based on pp-RPA.97

Computing the first vertex correction to this self-energy
leads to an anomalous self-energy of second order in T
which contains exactly one anomalous propagator97

Σee,(2T )(11′) = −iW (2T )(33′; 11′)Gee(33′), (55)

where the second-order effective interaction,

W (2T )(33′; 11′) = v(33′; 11′)

− iT (34′; 14)L0(42; 4
′2′)T (2′3′; 21′), (56)

Note that this self-energy is equivalent to the second-
order self-energy of Eq. (43) where the antisymmetrized
Coulomb interaction is replaced by the effective interac-
tion T and thus leads to a kernel that is non-zero in the
normal phase

iΞpp,(2T )(22′; 11′) =
1

2
[W (2T )(22′; 11′)−W (2T )(2′2; 11′)],

(57)

where

W (2T )(33′; 11′) = v(33′; 11′)

− iT (34′; 14)L0(42; 4
′2′)T (2′3′; 21′) (58)

is an effective interaction analog to W (2), but of second
order in T instead of v. In the following, this kernel is
computed under the approximation of a static effective
interaction T . The derivation of the second-order kernel
in a frequency-dependent effective interaction is beyond
the scope of this work.

The matrix elements of the kernel Ξpp,(2T ) are the
same as in Eq. (46a) but with W (2T ) instead of W (2).
The matrix elements of this effective interaction are given
by

W (2T )
pqrs (ω) = 〈pq|rs〉

+
∑
me

[
TpmreTeqms

ω − (εe − εm − iη)
− TpermTmqes

ω − (εm − εe + iη)

]
, (59)

where Tpqrs = Tpqrs(ω = 0) and the pp T -matrix elements
are

Tpqrs(ω) = 〈pq||rs〉

+
∑
ν

MN+2
pq,ν M

N+2
rs,ν

ω − ΩN+2
ν + iη

−
∑
ν

MN−2
pq,ν M

N−2
rs,ν

ω − ΩN−2
ν − iη

. (60)

Finally, the transition densities are defined as

MN+2
pq,ν =

∑
c<d

〈pq||cd〉XN+2
cd,ν +

∑
k<l

〈pq||kl〉Y N+2
kl,ν , (61a)

MN−2
pq,ν =

∑
c<d

〈pq||cd〉XN−2
cd,ν +

∑
k<l

〈pq||kl〉Y N−2
kl,ν , (61b)

where XN±2
pq,ν , Y N±2

pq,ν , and ΩN±2
ν are the matrix elements

of the eigenvectors and the eigenvalues of the pp-RPA
problem and are explicitly defined in the Supplementary
Material.

IV. COMPUTATIONAL DETAILS

The set of molecules considered here is the same as
in the recent benchmark of valence IPs and satellite
transitions developed by some of the authors.109 This
work extends this benchmark by computing the exact
lowest DIPs (singlet and triplet) of these 23 molecules.
The calculations are performed in Dunning’s aug-cc-
pVTZ.110–113 The geometries are extracted from the
quest database,37,114 meaning that they have been op-
timized at the CC3 level115,116 in the aug-cc-pVTZ ba-
sis set without frozen-core approximation. These ref-
erence values are computed using the quantum pack-
age implementation117 of the configuration interaction
using a perturbative selection made iteratively (CIPSI)
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method.118–123 The lowest DIPs of each molecule are ob-
tained as energy differences between the neutral ground-
state energy and the singlet and triplet cation ground-
state energies. We refer the reader to Ref. 109 for a
detailed discussion of the CIPSI extrapolation procedure
which is employed to produce the full configuration inter-
action (FCI) estimates.

Additionally, the single-site double core ionizations of
four molecules (H2O, NH3, CH4, and CO) have been
considered. In a single-site double core hole (DCH) state,
the two 1s electrons are ionized from the same orbital,
while in a double-site DCH state, the ionization process
occurs on distinct 1s orbitals. Here, we only consider
single-site DCHs. These calculations are performed in
Dunning’s aug-cc-pCVTZ.110,111,124 The reference values
have been computed under the core-valence separation
(CVS) approximation which restricts the CI expansion to
determinants with two core holes.125,126

The various flavors of pp-BSE considered in Sec. V
have been implemented in an open-source in-house pro-
gram, named quack.127 The implementation relies on a
full diagonalization of the spin-adapted pp-BSE matrices.
The machinery developed to reduce the cost of pp-RPA,
such as Davidson diagonalization61 or active spaces,128,129

could be transposed to pp-BSE but this is beyond the
scope of this work. In addition, for some starting points
and kernels, the TDA had to be enforced for BN and
C2 as the pp-BSE eigenproblem is unstable, that is, the
number of negative eigenvalues is larger than the number
of DIPs.104 Hence, for the sake of consistency, each BN
and C2 DIP has been computed within the TDA.

The underlying one-body Green’s function calculations
[GW , GF(2), and T -matrix] calculations rely on the lin-
earized version of the quasiparticle equation (without
self-consistency) to obtain the quasiparticle energies.13

The infinitesimal η is set to zero for all calculations except
for the perturbative correction where a value of 0.05Eh

has been used. The starting point of the one-body Green’s
calculations is always a (restricted) Hartree-Fock (HF)
solution.

The ∆SCF calculations have been performed with
quantum package. The determinants with two core
holes have been optimized using the maximum overlap
method (MOM).130–132 Finally, the DIP-EOM-CCSD cal-
culations have been performed using q-chem 6.2.1.133

V. RESULTS

Doubly ionized molecules can be obtained through var-
ious processes such as direct single- or two-photon ion-
izations or indirect mechanisms like the Auger-Meitner
effect.134,135 The theoretical understanding of the dica-
tion electronic structure is a crucial tool to precisely
interpret the corresponding experimental spectra. For
example, in a series of papers, Schirmer, Cederbaum, and
co-workers applied the algebraic diagrammatic construc-
tion (ADC)136,137 to the pp propagator to compute va-

lence DIPs.138,139 The pp-ADC became, after the seminal
∆SCF study of Ortenburger and Bagus,140 the method of
choice to decipher experimental Auger spectra.141–146 Var-
ious other pp-propagator-based methods have also been
considered to study this problem.147–152 Recently, highly
correlated methods in combination with non-Hermitian
extensions of quantum chemistry have been employed
to go beyond the pp-ADC state-of-the-art for Auger
spectra.153–156 In a different context, a clear theoretical
understanding of DCH states allowed to precisely interpret
the satellites of the corresponding spectra,157,158 as well as
understanding the dynamics of these DCH states.159,160

In the following section, the pp-BSE formalism is em-
ployed to compute valence and core DIPs. The accuracy
of its various variants is assessed and discussed for both
types of states.

A. Valence double ionization potentials

The first testbed of this study, designed to assess the
various approximations of pp-BSE, is composed of the
lowest singlet and triplet DIP of 23 small molecules. The
set of molecules is the same as in the valence IP and satel-
lite benchmark reported in Ref. 109. The FCI-quality
reference DIPs have been obtained using the CIPSI algo-
rithm and are reported in Table I. As mentioned earlier,
there are two levels of approximations in pp-BSE, namely,
the underlying one-body orbital energies and the choice
of the kernel.

The impact of the one-body propagators is investigated
first. The DIPs are computed with the pp-RPA first-order
Coulomb kernel for various starting points, hence different
orbital energies: HF, GW , T -matrix, and GF(2). These
are referred to as ppRPA@[HF, GW , GT , and GF(2)]
and their respective values are gathered in Table I. Figure
5 presents the corresponding histograms of errors with
respect to FCI. Before discussing these errors for DIPs, one
should recall the error on single IPs of these four starting
points. For a set of 58 valence IPs (of these 23 molecules),
the mean absolute errors (MAEs) of these four methods
are 1.30, 0.47, 0.49, and 0.81 eV while the mean signed
errors (MSEs) are 1.23, 0.40, 0.01, and −0.55 eV.109

The MAE and MSE associated with the pp-RPA@HF
DIPs are 2.88 eV and 2.85 eV, respectively. This error is
larger than the 1.30 eV MAE of HF IPs. However, the
mean value of IPs and DIPs on these two sets are 16.29
and 38.51 eV, respectively. Hence, the ratios of MAE over
mean value are similar: 0.07 for IPs and 0.08 for DIPs.

TheGW one-body energies offer a quantitative improve-
ment by decreasing the MAE by approximately 1 eV. In
addition, the positive MSE, 1.95 eV, almost equal to the
MAE, 1.96 eV, is is in agreement with the ppRPA@GW
results of Noguchi and co-workers who also observed
a systematic overestimation of DIPs for several small
molecules.149–151 The ppRPA@GT and ppRPA@GF(2)
have a similar MAE, 1.27 and 1.01 eV, respectively. How-
ever, with a MSE of 0.17 eV, the ppRPA@GF(2) er-
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TABLE I. DIPs (in eV) toward the singlet (left panel) and triplet (right panel) dication ground states in the aug-cc-pVTZ basis
set computed at the FCI level and the pp-RPA level using various one-body energies: HF, GW , T -matrix, and GF(2).

Singlet DIPs Triplet DIPs
Molecule FCI ppRPA@HF ppRPA@GW ppRPA@GT ppRPA@GF(2) FCI ppRPA@HF ppRPA@GW ppRPA@GT ppRPA@GF(2)
H2O 41.43 47.00 45.22 43.94 42.39 40.29 46.18 44.50 43.27 41.80
HF 50.69 57.85 55.11 53.90 51.87 47.90 55.62 52.85 51.67 49.65
Ne 65.43 72.80 69.51 68.64 66.63 62.19 70.12 66.79 65.96 63.95
CH4 38.98 41.07 40.98 39.95 39.61 38.27 40.37 40.27 39.25 38.91
NH3 35.91 39.45 38.65 37.47 36.55 38.38 41.98 41.35 40.23 39.44
CO 41.29 43.99 42.83 41.71 40.75 41.56 42.61 42.00 41.06 40.54
N2 42.81 46.27 44.24 42.93 41.53 43.70 46.66 46.24 45.24 44.96
BF 34.53 34.72 35.47 34.50 34.67 38.47 39.33 38.12 37.29 36.44
LiF 40.00 46.75 43.89 42.77 40.47 37.35 44.71 41.81 40.73 38.44
BeO 32.18 36.43 35.20 33.73 32.00 31.43 35.06 33.78 32.36 30.63
BN 34.98 36.34 36.73 36.25 35.29 33.73 35.19 35.59 35.10 34.15
C2 35.98 37.58 38.58 38.74 38.88 37.07 36.50 37.50 37.66 37.80
CS 33.36 34.87 34.84 33.80 33.71 32.68 34.22 34.18 33.15 33.06
LiCl 30.83 33.18 32.60 32.03 31.62 29.35 31.80 31.21 30.65 30.24
F2 44.48 48.90 45.05 43.15 40.63 43.87 48.63 44.81 42.91 40.41
H2S 31.75 32.81 32.98 32.19 32.19 32.77 34.16 34.21 33.45 33.38
PH3 31.15 31.94 32.39 31.47 31.57 32.38 33.22 33.38 32.58 32.54
HCl 37.17 39.17 38.87 38.21 38.03 35.61 37.70 37.39 36.74 36.56
Ar 44.74 47.14 46.49 45.98 45.73 42.98 45.42 44.77 44.26 44.01
SiH4 32.78 33.74 33.73 33.07 32.94 32.65 33.52 33.51 32.85 32.72
CH2O 33.33 35.66 34.27 32.79 31.45 37.08 38.35 37.69 36.41 35.64
CO2 38.54 40.26 39.03 37.69 36.72 37.37 39.83 38.61 37.27 36.32
BH3 36.72 37.50 37.67 36.95 36.84 35.44 36.14 36.36 35.62 35.52
MSE 2.89 1.97 0.99 0.13 2.82 1.93 1.01 0.20
MAE 2.89 1.97 1.23 0.96 2.87 1.96 1.31 1.05
RMSE 3.55 2.27 1.58 1.32 3.66 2.39 1.71 1.28
SDE 2.11 1.16 1.25 1.34 2.39 1.45 1.41 1.29
Min 0.19 0.49 -1.32 -3.85 -0.57 -0.35 -1.18 -3.45
Max 7.37 4.42 3.21 2.90 7.93 4.95 3.78 1.76
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FIG. 5. Histogram of the errors (with respect to FCI) for the singlet and triplet principal DIP of 23 small molecules computed
in the aug-cc-pVTZ basis set at the pp-RPA level using various one-body energies: HF, GW , T -matrix, and GF(2).

ror distribution is more centered around zero than its
ppRPA@GT counterpart with its MSE of 1.00 eV. Note
that the decrease of the MSE along the series HF, GW , T -
matrix, and GF(2) is the same as observed in the case of
single IPs. The error spread, quantified by the root mean
square error (RMSE) and the standard deviation error
(SDE), is also decreased when using GW , T -matrix, and
GF(2) orbital energies rather than HF. Finally, for these
four methods, there is no noticeable difference between
the MAE for singlets and triplets (see Table I).

Note that, for the GW , GF(2), and T -matrix self-
energies, we rely on the one-shot scheme to compute the
quasiparticle energies. The effect of self-consistency on the
one-body energies has also been gauged by computing the
pp-RPA DIPs based on evGW 161–165 and qsGW 165–170

starting points. The corresponding values are reported
in the Supplementary Material and evidence that self-

consistency slightly improves both the IPs and DIPs.
Now that the effect of the one-body energies has been

discussed in detail, approximate kernels going beyond
the first-order static approximation will be considered.
These kernels will be compared with the state-of-the-art
wave function method for valence DIP, namely the DIP-
EOM-CCSD. The corresponding values are reported in
Table II. For this benchmark set, DIP-EOM-CCSD has
a MAE of 0.57 eV and a MSE of 0.52 eV. We recall that
its computational cost is O(N6) where N is the size of
the one-body basis set.

First, we focus on the GW kernel (see Sec. III C) which
has been the most popular in the eh case. The results for
the three variants of this kernel that will be discussed are
reported in Table II, and the corresponding histograms
of errors are displayed in Fig. 6. The static GW kernel,
denoted as ppBSE@GW , brings a quantitative improve-
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TABLE II. DIPs (in eV) toward the singlet (left panel) and triplet (right panel) dication ground states in the aug-cc-pVTZ basis
set for DIP-EOM-CCSD and three variants of pp-BSE corresponding to a static GW kernel (ppBSE@GW ), a static GW kernel
within the TDA (TDA@ppBSE@GW ) and a dynamic GW kernel within the TDA (TDA@dynBSE@GW ). The renormalization
factor associated with the dynamic correction, as defined in Eq. (38), is reported in parenthesis.

Singlet DIPs Triplet DIPs
TDA TDA TDA TDA

Molecule DIP-CCSD ppBSE@GW ppBSE@GW dynBSE@GW DIP-CCSD ppBSE@GW ppBSE@GW dynBSE@GW
H2O 42.04 40.30 40.48 41.04(0.78) 41.06 40.25 40.30 41.17(0.85)
HF 51.53 49.22 49.35 50.22(0.80) 48.89 47.27 47.33 48.52(0.85)
Ne 66.16 63.15 63.30 64.43(0.84) 63.03 60.79 60.86 62.28(0.88)
CH4 39.29 39.31 39.37 39.78(0.94) 38.59 38.76 38.79 39.18(0.94)
NH3 36.25 34.94 35.13 35.53(0.81) 38.86 38.61 38.65 39.38(0.92)
CO 42.02 41.83 41.98 42.13(0.90) 42.19 41.57 41.59 41.68(0.97)
N2 43.94 44.10 44.16 44.19(0.96) 44.57 44.34 44.37 44.86(0.94)
BF 34.86 33.54 33.77 33.68(0.81) 38.59 38.01 38.02 38.14(0.98)
LiF 41.09 37.75 37.88 38.63(0.88) 38.59 36.00 36.05 36.83(0.82)
BeO 33.20 30.56 30.67 31.02(0.81) 31.37 29.39 29.43 29.94(0.78)
BN 35.33 33.94 33.94 34.27(0.83) 34.17 32.98 32.98 33.41(0.86)
C2 37.18 36.44 36.44 36.77(0.88) 36.34 35.52 35.52 35.91(0.90)
CS 34.02 33.79 33.84 34.09(0.95) 33.32 33.33 33.35 33.56(0.96)
LiCl 31.37 30.09 30.17 30.41(0.88) 29.94 29.02 29.05 29.34(0.86)
F2 45.41 45.05 45.08 45.19(0.99) 44.85 44.55 44.57 44.85(0.98)
H2S 31.99 31.03 31.18 31.44(0.88) 33.09 32.79 32.82 33.06(0.92)
PH3 31.37 30.91 31.05 31.27(0.90) 32.61 32.62 32.64 32.78(0.95)
HCl 37.52 36.57 36.66 37.06(0.89) 36.01 35.41 35.44 35.87(0.91)
Ar 45.17 44.01 44.10 44.57(0.90) 43.45 42.66 42.70 43.18(0.92)
SiH4 33.01 33.36 33.38 33.49(0.98) 32.90 33.20 33.22 33.30(0.98)
CH2O 33.85 33.15 33.24 33.52(0.94) 36.53 35.84 35.86 36.41(0.92)
CO2 39.10 38.45 38.50 38.79(0.97) 38.16 37.87 37.90 38.27(0.97)
BH3 36.90 36.72 36.78 36.97(0.95) 35.63 35.61 35.64 35.81(0.96)
MSE 0.59 -0.47 -0.38 -0.03 0.44 -0.27 -0.24 0.23
MAE 0.59 0.84 0.78 0.61 0.56 0.63 0.63 0.62
RMSE 0.67 1.03 0.97 0.72 0.64 0.82 0.81 0.73
SDE 0.32 0.94 0.91 0.74 0.47 0.80 0.79 0.71
Min 0.18 -2.28 -2.14 -1.37 -0.73 -2.04 -2.00 -1.49
Max 1.20 1.29 1.35 1.38 1.24 0.68 0.70 1.16
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FIG. 6. Histogram of the errors (with respect to FCI) for the singlet and triplet principal DIP of 23 small molecules computed in
the aug-cc-pVTZ basis set at various levels of theory. The leftmost panel gathers the DIP-EOM-CCSD results and the three other
panels are based on pp-BSE with a static GW kernel (ppBSE@GW ), a static GW kernel within the TDA (TDA@ppBSE@GW ),
and a dynamic GW kernel within the TDA (TDA@ppBSE@dynBSE), respectively.

ment with respect to both ppRPA@HF and ppRPA@GW .
However, the MAE of ppBSE@GW , 0.73 eV, is still
slightly higher than DIP-EOM-CCSD while having the
same O

(
N6

)
formal computational cost. The TDA of

the static GW kernel (denoted as TDA@ppBSE@GW )
also has a computational cost of O

(
N6

)
but with a

much lower prefactor as its scaling is formally O
(
O5V

)
while the full ppBSE@GW is O

(
V 6

)
and DIP-EOM-

CCSD is O
(
O2V 4

)
(where O and V are the numbers

of occupied and virtual spin-orbitals, respectively).171

Hence, TDA@ppBSE@GW is much less expensive than
ppBSE@GW and DIP-EOM-CCSD. As one can see in

Fig. 6, this approximation does not quantitatively affect
the MSE and MAE with respect to its ppBSE@GW coun-
terpart. The impact of the TDA is further investigated
using various kernels in the Supplementary Material. This
shows that the effect (on average) of the TDA, as for the
GW kernel, is to increase the DIPs with respect to the
full pp-BSE scheme.

The last variant of the GW kernel that is considered is
the perturbative correction accounting for dynamic effects.
This correction is only considered in the TDA and the
results are referred to as TDA@dynBSE@GW in Table
II and Fig. 6. For the 46 DIPs considered in this work,
the dynamic correction is positive for 45 of them. For the
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TABLE III. DIPs (in eV) toward the singlet (left panel) and
triplet (right panel) dication ground states in the aug-cc-pVTZ
basis set computed with pp-BSE using a static GF(2) kernel
and a static T -matrix kernel.

Singlet DIPs Triplet DIPs
Molecule ppBSE@GF(2) ppBSE@GT ppBSE@GF(2) ppBSE@GT
H2O 36.54 41.51 35.90 40.93
HF 44.76 50.96 42.12 48.71
Ne 59.99 65.76 56.79 63.02
CH4 37.55 38.97 36.97 38.32
NH3 32.40 35.75 35.73 38.65
CO 39.46 42.04 41.04 41.36
N2 42.47 44.04 43.11 44.40
BF 30.30 33.79 37.02 37.55
LiF 32.92 40.31 30.29 38.25
BeO 24.38 31.42 22.95 30.03
BN 31.40 35.85 29.84 34.67
C2 37.10 37.95 35.88 36.84
CS 30.29 33.51 32.35 32.90
LiCl 28.81 30.93 27.58 29.61
F2 42.22 44.79 40.14 44.28
H2S 29.55 31.22 31.58 32.61
PH3 28.84 30.63 31.62 32.11
HCl 35.76 37.05 34.20 35.68
Ar 43.07 44.78 41.56 43.15
SiH4 32.48 32.83 32.39 32.64
CH2O 30.32 32.60 33.25 35.61
CO2 37.00 38.37 35.96 37.77
BH3 36.00 36.60 34.99 35.36
MSE -2.85 0.11 -2.58 0.08
MAE 2.94 0.45 2.58 0.50
RMSE 3.58 0.64 3.44 0.65
SDE 2.22 0.65 2.32 0.66
Min -7.80 -0.77 -8.48 -1.48
Max 1.12 1.97 -0.26 0.93

DIPs that were already overestimated at the static level,
this positive shift slightly worsened the results. However,
on average, this perturbative correction improves the re-
sults as the MAE (0.62 eV) is decreased with respect to
the static case. Hence, the TDA@dynBSE@GW method
has almost the same accuracy as the EOM-DIP-CCSD
while being more centered around zero (MSE of 0.1 eV).
Regarding its cost, computing the dynamic correction
scales as O(O5V ), but this task has to be performed for
each eigenvalue one is willing to correct. Note that the
TDA@dynBSE@GW results have been obtained using
η = 0.05Eh in order to regularize the diverging denomi-
nators of Eq. (54). The renormalization factor associated
with the dynamic correction is reported in parenthesis in
Table II. The smallest factor among this set is 0.78 which
shows that, at least under regularization, the perturbation
theory is well-behaved. Finally, the dynamically-corrected
GW kernel negates the MAE discrepancy between singlets
and triplets that can be observed at the static level.

To conclude this section, we discuss alternative kernels
based on second-order or T -matrix self-energies. The 46
DIPs have been computed using the GF(2) kernel under
the static approximation and the results are reported in
Table IV under the label ppBSE@GF(2). As shown by the
corresponding histogram of errors (see Fig. 7), the static
second-order kernel performs as poorly as ppRPA@HF
but with a MSE of the opposite sign. As for the GW
case, the effect of the one-body energies and the kernel
adds up, leading to a decrease in the DIPs with respect
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FIG. 7. Histogram of the errors (with respect to FCI) for
the singlet and triplet principal DIP of 23 small molecules
computed using the aug-cc-pVTZ basis set using a static GF(2)
kernel and a static T -matrix kernel.

to ppRPA@HF. However, in the GF(2) case, these two
corrections are too large, and, hence, the ppBSE@GF(2)
correction is overestimated and does not improve the
result on average.

The performance of the second-order T -matrix ker-
nel, discussed in Sec. III D, is also investigated. This
kernel is considered in the static limit and is denoted as
ppBSE@GT . The corresponding numerical results are dis-
played in Table IV and Fig. 7. This method achieves the
best MAE (0.47 eV) among all the methods considered in
this work. Hence, as the GW kernel, the ppBSE@GT also
achieves a correct balance between the corrections coming
from the one-body energies and the kernel. On the other
hand, this kernel is also more expensive than the GW and
GF(2) ones as it requires the computation of the tensor
elements associated with the effective interaction T [see
Eq. (60)] which formally scales as O(N4OV ). Note also
that, in the static T -matrix case, there is no noticeable
difference in accuracy between singlet and triplet DIPs.

B. Double core hole states

DCH states were first discussed by Cederbaum
and co-workers, who showed that they are signifi-
cantly more sensitive to the chemical environment
than single-core holes.172,173 This theoretical prediction
was later experimentally confirmed by several research
groups.159,160,174,175 Cederbaum’s seminal works have
since inspired numerous studies on DCH states using state-
specific correlated methods.157,158,176–178 These theoret-
ical developments have been instrumental in accurately
interpreting the satellite structure observed in some DCH
spectra.157,158

The DIPs corresponding to DCH states are naturally
captured within the poles of the two-body pp propagator
[see Eq. (12)]. Table IV presents single-site DCH energies
for two different kernels: the pp-RPA kernel (Sec. III A)
and the static GW kernel (Sec. III C). The results are
compared with mean-field state-specific (∆SCF) DCH
energies obtained using MOM. Finally, the reference en-
ergies are of FCI quality and have been computed using
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TABLE IV. Single-site DCH energies (in eV) computed at
various levels of theory with the aug-cc-pCVTZ basis set. The
asterisk indicates the ionization site.
Molecule FCI ∆SCF ppRPA ppBSE@GW

H2O∗ 1172.9 1170.9 1247.9 1186.9
N∗H3 892.2 890.9 957.5 906.6
C∗H4 651.3 650.8 704.6 664.8
CO∗ 1177.0 1174.5 1253.4 1209.4
C∗O 665.9 667.7 713.4 678.0
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-60

-40

-20
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FIG. 8. Errors (with respect to CVS-FCI) associated with
single-site DCH energies computed in the aug-cc-pCVTZ basis
set at the ppRPA@HF, ppBSE@GW , and ∆SCF levels. The
asterisk indicates the ionization site.

the CIPSI algorithm under the CVS approximation on
top of the corresponding ∆SCF determinant. In the case
of DCHs, the CVS approximation constrains the deter-
minants in the CI expansion to be doubly core ionized
configurations.

Figure 8 shows the error of the three approximate meth-
ods considered in this work. It is readily seen that the
ppBSE@GW largely improves the DCH energies with
respect to ppRPA@HF. However, the minimal error for
ppBSE@GW remains as large as 12 eV, while the max-
imum error at the ∆SCF level is only 2.5 eV. This sig-
nificant performance disparity arises from the inclusion
of orbital relaxation effects at the MOM level, which are
absent in the linear-response approach. This compari-
son highlights that while kernel improvements enhance
results in the linear-response framework, state-specific
formalisms should be preferred when available for core-
ionized states. Nevertheless, the improvement offered by
ppBSE@GW can be valuable in cases where state-specific
approaches are challenging to implement, as in periodic
systems.179–182

VI. CONCLUSION

This work provides an in-depth discussion of the eh and
pp components of the two-body propagator, highlighting
their similarities from the perspectives of both correlation
functions and linear response theory. In particular, it
demonstrates that the response of an anomalous prop-
agator to a pairing field yields a kernel expression for

the pp-BSE that is fully analogous to the standard eh-
BSE kernel. This kernel has been explicitly calculated for
common self-energy approximations, including the first-
and second-order Coulomb self-energies. Additionally,
approximate kernels derived from effective interactions,
specifically W (based on bubble diagrams) and T (based
on pp-ladder diagrams), are discussed in detail. These ap-
proximate pp kernels hold potential in other contexts, such
as the three-body propagator equations, which usually
rely on the Coulomb kernel or ad hoc kernels.107,183,184

The performance of these various approximations has
been assessed for valence and core DIPs. The influence
of the choice of the starting point and of the kernels has
been investigated across a set of 46 DIPs. It has been
shown that the static GW kernel under the TDA is only
slightly worse than DIP-EOM-CCSD but with a much
lower computational cost. Furthermore, adding a per-
turbative correction on top of the pp-BSE brings it even
closer to the DIP-EOM-CCSD accuracy. On the other
hand, the second-order Coulomb kernel performs poorly
for DIPs. However, the second-order kernel relying on the
pp T -matrix effective interaction is more accurate than
ppBSE@GW and DIP-EOM-CCSD on average, albeit
with a higher computational cost. Finally, it has been
shown that the GW kernel also provides a quantitative
improvement over pp-RPA for core DIPs.

While this work has focused on DIPs, the accuracy of
the various kernels for DEAs is an obvious and interest-
ing follow-up of this work. However, systems capable of
binding two electrons are generally spatially large, posing
challenges for our current computational implementations.
In addition, the DEAs of the (N−2)-electron system com-
puted at the pp-RPA level have been extensively used
to compute neutral excitation energies of the N -electron
system.60–66 Comparing the performance of various ker-
nels within this framework would be valuable. Finally,
the adiabatic connection fluctuation dissipation theorem
which has been applied to the two-body eh propagator to
compute correlation energies could be transposed to the
pp case as well.82,83,185–187 This is left for future work.

SUPPLEMENTARY MATERIAL

See the Supplementary Material for a detailed deriva-
tion of every equation presented in the main manuscript
and additional results on the pp-RPA starting-point de-
pendence and the TDA.
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