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Anomalous propagators and the particle-particle channel: Hedin’s equations
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Hedin’s equations provide an elegant route to compute the exact one-body Green’s function (or propagator)
via the self-consistent iteration of a set of nonlinear equations. Its first-order approximation, known as GW ,
corresponds to a resummation of ring diagrams and has shown to be extremely successful in physics and
chemistry. Systematic improvement is possible, although challenging, via the introduction of vertex corrections.
Considering anomalous propagators and an external pairing potential, we derive a self-consistent set of closed
equations equivalent to the famous Hedin equations but having as a first-order approximation, the particle-
particle (pp) T -matrix approximation, where one performs a resummation of the ladder diagrams. This pp version
of Hedin’s equations offers a way to go systematically beyond the T -matrix approximation by accounting for
low-order pp vertex corrections.

DOI: 10.1103/PhysRevB.110.115155

I. RESUMMATION IN MANY-BODY
PERTURBATION THEORY

In 1965, Lars Hedin published a seminal paper that
introduced a set of equations,

G(11′) = G0(11′) + G0(12)�(22′)G(2′1′), (1a)

�xc(11′) = iG(33′)W (12′; 32)�̃(3′2; 1′2′), (1b)

W (12; 1′2′) = v(12−; 1′2′)

− iW (14; 1′4′)L̃(3′4′; 3+4)v(23; 2′3′), (1c)

L̃(12; 1′2′) = G(13)G(3′1′)�̃(32; 3′2′), (1d)

�̃(12; 1′2′) = δ(12′)δ(1′2)

+�xc(13′; 1′3)G(34)G(4′3′)�̃(42; 4′2′), (1e)

now referred to as Hedin’s set [1]. The composite index 1
gathers time, spin, and spatial variables, and implicit integra-
tion over repeated indices is assumed. The quantities involved
will be defined in the following discussion. Here, we consid-
ered the four-point version of these equations [2–4]. (The form
of the present set is not exactly the one introduced by Hedin in
Ref. [1] but it is more convenient in the context of this paper.)
This set of nonlinear equations provides a theoretical route to
compute the exact one-body Green’s function (or propagator)
G through self-consistent iterations.

While this formal recipe to obtain the exact propagator
is elegant, the main success of Hedin’s equations lies in its
first-order approximation, the so-called GW approximation
[5–8], which is achieved by discarding the second term of
the four-point irreducible vertex function �̃. Hence, the GW
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exchange-correlation (xc) self-energy,

�GW
xc (11′) = iG(22′)W (2′1; 1′2), (2)

is expressed in terms of the one-body propagator and the
dynamically screened Coulomb interaction W . The GW
approximation has been first employed to compute the pho-
toemission spectrum of solids [9–19] before being imported
in quantum chemistry to calculate electron attachment and de-
tachment energies in molecular systems [20–31]. It has proven
to be successful in both fields for weakly and moderately
correlated systems.

The GW self-energy defined in Eq. (2) corresponds to the
first-order term of an expansion with respect to the effective
interaction W . While the associated dynamical screening can
theoretically be computed using any irreducible particle-hole
(ph) correlation function L̃, Hedin’s equations naturally sug-
gest relying on the same approximated vertex function in L̃
and �. If this choice is made, the ph direct random-phase ap-
proximation (RPA) polarizability [32] naturally appears in the
construction of the screened interaction. The diagrammatic
content of the corresponding effective interaction is illustrated
in Fig. 1. The ph-RPA is well known as it corresponds to
the resummation of polarizability diagrams that are the most
important in the uniform electron gas at high density, the
so-called bubble (or ring) diagrams [33–38].

On the other hand, the most relevant diagrams in the low-
density limit of the uniform electron gas with short-range
interactions (as well as in nuclear matter) are quite different
[38]. These diagrams, known as ladders, and their exchange
counterparts can also be resummed and this yields the analog
particle-particle (pp) RPA, also known as pairing vibration
approximation [32]. These two closely related approxima-
tions include two different types of correlation events and,
hence, do not yield the same correlation energies. The pp-
RPA correlation energy has been shown to be equivalent to
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FIG. 1. The dynamically screened interaction W (wiggly line)
computed at the ph-RPA level corresponds to a resummation of
bubble diagrams. The dashed lines represent the Coulomb interaction
and the solid lines with arrows denote the one-body propagator.

coupled cluster with double excitations (CCD) restricted to
ladder terms [39,40]. Similarly, the ph-RPA correlation energy
is equivalent to CCD restricted to another subset of terms,
namely the ring terms [41].

As mentioned earlier, the ph-RPA appears naturally in the
GW approximation. Within Hedin’s equations, ladder self-
energy diagrams are obtained through vertex corrections. At
each self-consistent iteration of Eqs. (1), the functional deriva-
tive of W appearing in �̃ (through the exchange-correlation
kernel �xc = δ�xc/δG) creates an additional ladder self-
energy diagram of higher order [42,43]. However, in certain
physical situations, it is preferable to account for all ladder
diagrams from the start. This is achieved by the T -matrix
approximation.

The T -matrix approximation [44,45], also known as the
Bethe-Goldstone approximation [46], has first been intro-
duced in the nuclear many-body problem [47,48]. The
T matrix is a four-point effective interaction accounting for re-
peated scattering of two particles. In practice, these scattering
events are often computed at the pp-RPA level [32]. This is in
close analogy with the effective interaction W accounting for
screening events and built using the ph-RPA. The diagrams re-
summed in the T -matrix effective interaction are represented
in Fig. 2. Note that the term T matrix has been employed in
various contexts for different types of effective interaction and
they should not be confused (see, for example, the electron-
hole T matrix for electron-magnon scattering [4,49–51]). The
T -matrix-based self-energy has been applied to model sys-
tems, like the Hubbard model [49,52], as well as more realistic
solids (though often combined with other correlation channels
in this case) [53–57]. One of its main successes in this field is
the description of the 6 eV satellite of nickel [53,54]. More
recently, it has been used to compute ionization potentials of
molecular systems [4,58–62], where it has been shown to have
similar accuracy to GW for valence ionization potentials if
a Hartree-Fock reference is employed for both [58]. Finally,
the T matrix has also been applied in various other fields,
especially those where pairing correlations are important,

TT == ++ ++ ++ ......

FIG. 2. The effective interaction T computed at the pp-RPA level
corresponds to a resummation of ladder diagrams. The dashed lines
represent the Coulomb interaction and the solid lines with arrows
denote the one-body propagator. The exchange counterpart of each of
these diagrams should be also included but has not been represented
here.

such as nuclear matter [48,63–65], superconducting materials
[66–70], or Fermi gases [67,71,72].

Unfortunately, while Hedin’s equations provide a path to
go beyond GW , to the best of our knowledge, there is no
such set of equations for the T -matrix approximation. The
T matrix was initially introduced as a resummation of di-
agrams, or equivalently as a Bethe-Salpeter equation for
an effective four-point interaction [47]. On the other hand,
Hedin’s equations stem from a functional derivative frame-
work [5]. Romaniello et al. managed to obtain the T matrix
in such a framework [49]. Their derivation highlights con-
nections between the GW and T -matrix approximations, as
well as ways to combine them to go beyond GW . However,
it does not provide a straightforward pathway for a systematic
inclusion of vertex corrections in the T -matrix approximation,
as in the case of GW . Vertex corrections to the GW self-energy
is an active field of research [3,42,43,49,73–84], and extend-
ing these corrections to the T -matrix approximation would
undoubtedly offer valuable insights.

The primary focus of the present paper is to bridge this gap
by deriving, from first principles, an alternative set of equa-
tions for the one-body propagator. Within this framework, the
T matrix emerges naturally through the lowest-order vertex
approximation, in close analogy with the GW approximation.
Therefore, we shall refer to it as the pp version of Hedin’s
equations. The crux of the derivation lies in the considera-
tion of anomalous propagators and a non-number-conserving
external potential, as elaborated in the subsequent sections.
The present paper aligns with several studies dealing with
the generalization of Hedin’s equations to a spin-dependent
interaction [85], the exploration of connections between the
parquet and GW � formalisms [86], or the extension of
Hedin’s equations to the Gorkov propagator [87].

II. SELF-ENERGY AND SCHWINGER RELATIONS

The central object of this closed set of equations is
the equilibrium time-ordered one-body propagator (at zero
temperature) defined as

G(11′) = (−i)
〈
�N

0

∣∣T̂ [ψ̂ (1)ψ̂†(1′)]
∣∣�N

0

〉
, (3)

where |�N
0 〉 is the exact N-electron ground-state wave func-

tion. The time-ordering operator T̂ acts on the annihilation
and creation field operators in the Heisenberg picture, which
read

ψ̂ (1) = ψ̂ (x1, t1) = eiĤt1ψ̂ (x1)e−iĤt1 , (4a)

ψ̂†(1) = ψ̂†(x1, t1) = eiĤt1ψ̂†(x1)e−iĤt1 , (4b)

where Ĥ is the electronic Hamiltonian and x1 is a variable
gathering spin and position r1.

The first step is the same as in the usual derivation of
Hedin’s equations (see, for example, Ref. [12]) and consists
of deriving the Dyson equation,

G(11′) = G0(11′) + G0(12)�(22′)G(2′1′), (5)

from the equation of motion for G. Here, G0 is the noninter-
acting one-body propagator and the self-energy is defined as

�(11′) = −iv(12; 3′2′)G2(2′+3′; 2++3)G−1(31′). (6)
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This definition involves the inverse of the one-body
propagator G−1, the four-point Coulomb interaction

v(12; 1′2′) = δ(11′)v(12)δ(22′) (7)

with

v(12) = δ(t1 − t2)

|r1 − r2| , (8)

and the two-body propagator

G2(12; 1′2′) = (−i)2〈�N
0 |T̂ [ψ̂ (1)ψ̂ (2)ψ̂†(2′)ψ̂†(1′)]|�N

0 〉.
(9)

The notation 1± means that an infinitesimal shift is
added/subtracted to the corresponding time variable and
δ(11′) is the Dirac delta function.

To obtain a closed set of equations for G, the two-body
Green’s function must be expressed in terms of the one-body
propagator. This is achieved thanks to the Schwinger relation
[88]

G2(12; 1′2′) = − δG(11′)
δU eh(2′2)

+ G(11′)G(22′), (10)

which express G2 in terms of G and its derivative with respect
to an electron-hole (eh) external potential U eh, which is linked
to the external operator

Û eh(t2) =
∫

d(x2x2′ )ψ̂†(x2)U eh(x2x2′ ; t2)ψ̂ (x2′ ) (11)

as U eh(11′) = U eh(x1x1′ ; t1)δ(t1 − t1′ ). Note that, in Eq. (10),
the one- and two-body propagators have been generalized to
their nonequilibrium version. In the following, the functional
U dependence of these propagators is not explicitly written for
the sake of conciseness. In the presence of such an external
potential, the field operators of Eqs. (4a) and (4b) have to
be generalized to the case of a time-dependent Hamiltonian.
Hence, as explained in detail in the Supplemental Material
(SM) [89] (see also Refs. [88], [90], and [5] therein), the
derivation of the Schwinger relation is more conveniently
performed in the interaction representation.

The key idea to obtain an alternative system of equations is
to realize that an analog relationship can be obtained in the
case of an external pairing potential operator,

Ûpp(t2) = 1

2

∫
d(x2x2′ )[ψ̂†(x2)U ee(x2x2′ ; t2)ψ̂†(x2′ )

+ ψ̂ (x2)U hh(x2x2′ ; t2)ψ̂ (x2′ )], (12)

composed by an electron-electron (ee) and a hole-hole (hh)
external potential, U ee and U hh, respectively. One major dif-
ference with Û eh is that Ûpp does not commute with the
particle number operator. Therefore, the number of particles
is not a good quantum number of the Hamiltonian in the
presence of Ûpp. Equivalently, one may say that Ûpp breaks
the U (1) symmetry of the Hamiltonian [38].

The linear response of G to this external perturbation is not
linked to G2 as in Eq. (10). However, G2 can be obtained as the
response of an anomalous propagator to this external pairing
potential

G2(12; 1′2′) = −2
δGee(1′2′)
δU hh(12)

− Gee(1′2′)Ghh(12). (13)

The derivation of this equation closely follows the one of
Eq. (10) and is reported in the SM [89].

The anomalous propagator Gee, and its counterpart Ghh,
also known as pairing propagators, are defined as

Gee(11′) = (−i)〈�0|T̂ [ψ̂†(1)ψ̂†(1′)]|�0〉, (14a)

Ghh(11′) = (−i)〈�0|T̂ [ψ̂ (1)ψ̂ (1′)]|�0〉. (14b)

Therefore, the one-body propagator defined in Eq. (3)
will now be denoted as Ghe and referred to as the normal
propagator. Thanks to Nambu’s matrix formalism [91], these
propagators can be gathered in a single entity

G(11′) =
(

Ghe(11′) Ghh(11′)

Gee(11′) Geh(11′)

)
, (15)

known as the Gorkov propagator [92]. The lower-right eh
propagator is linked to the normal propagator by the relation-
ship Geh(11′) = −Ghe(1′1). The Gorkov propagator admits a
Dyson equation

G(11′) = G0(11′) + G0(12)[�(22′) + U (22′)]G(2′1′),
(16)

which defines the normal and anomalous components of the
corresponding self-energy in Nambu’s formalism

�(11′) =
(

�he(11′) �hh(11′)

�ee(11′) �eh(11′)

)

= G−1
0 (11′) − G−1(11′) − U (11′). (17)

The matrix G0 is the independent-particle Gorkov propagator
and

U (11′) =
(

0 U ee(11′)
U hh(11′) 0

)
. (18)

Note that U ee appears in the hh component of Nambu’s matrix
formalism and vice versa. This property is a direct conse-
quence of the equation of motion for G which is derived in
the SM [89].

A diagrammatic perturbation expansion of � in terms of
the Coulomb interaction exists as in the simpler case of
�he [38,91]. Recently, this perturbation expansion has been
derived up to second order, implemented, and applied to
mid-mass nuclei in the context of nuclear structure calcula-
tions [93–98]. (See also Ref. [99] for a recent extension of
the Gorkov algebraic diagrammatic construction up to third
order.)

Note that, in the definition of Gee and Ghh, the superscript
N characterizing the ground-state wave function has been
removed. Indeed, as mentioned above, the number of particles
is not conserved in the presence of the external pairing poten-
tial. Hence, the wave function becomes a linear superposition
of wave functions with various particle numbers. If a wave
function with a fixed number of particles is considered, then
the anomalous propagators vanish [see Eqs. (14a) and (14b)].
For the nonrelativistic electronic Hamiltonian, this will always
be the case for the exact wave function of a finite system
|�N

0 〉 as this Hamiltonian does not spontaneously break the
particle-number symmetry [100–102]. In some cases, such
as superconductivity or nuclear superfluidity [103,104], re-
lying on symmetry-broken approximate wave functions and

115155-3



MARIE, ROMANIELLO, AND LOOS PHYSICAL REVIEW B 110, 115155 (2024)

the associated nonzero anomalous propagators is essential to
describe the physics at play.

At first, it might seem counterintuitive to use Gee and Ghh

with a number-conserving Hamiltonian. However, it is crucial
to realize that while anomalous quantities are zero when the
pairing potential is switched off, their derivatives with respect
to the pairing external potential can be nonzero at U = 0.
This is exemplified by taking the equilibrium limit of Eq. (13)
where the derivative of Gee with respect to U hh evaluated at
U = 0 is equal to G2.

Before going further, we should mention that anomalous
quantities and/or pairing potentials have also been explored
in various ways in quantum chemistry [105–113]. One di-
rectly related example is the study of Yang’s group on pairing
fields in density-functional theory (DFT) [102,114,115]. They
formulated the adiabatic connection fluctuation dissipation
theorem in terms of pairing matrix fluctuations which leads
to a new path to develop density functional approximations
[102,114]. They also extended the adiabatic time-dependent
DFT (TDDFT) formalism to an external pairing field [115].
This alternative response problem is closely related to pp-
RPA and yields complementary information to the usual
ph-TDDFT problem. Another example is the variation-after-
projection ansatz where the particle-number symmetry of a
Hartree-Fock determinant is restored before variational op-
timization at a mean-field cost [116] (see also Ref. [117]).
Finally, Johnson and coworkers employed Richardson-Gaudin
states (the eigenfunctions of the Bardeen-Cooper-Schriffer

model Hamiltonian [103]) as building blocks to describe
strongly correlated molecular systems [118–122].

III. PARTICLE-PARTICLE GORKOV-HEDIN EQUATIONS

The stage is now set to derive the pp version of Hedin’s
equations. As mentioned earlier, the relevant equations for a
number-conserving Hamiltonian are the ones involving only
Ghe and �he. However, because the Schwinger relation in-
volves the other components of the Gorkov propagator, it is
more convenient to derive a closed set of equations for G (at
finite U ), hence referred to as the pp Gorkov-Hedin equa-
tions. Then, the equations relevant for number-conserving
Hamiltonians are recovered in the limit of a vanishing pairing
potential. This will be done in Sec. IV where the link with
the conventional Hedin equations will be discussed. In this
section, an overview of the derivation of the pp Gorkov-Hedin
equations is provided. A more comprehensive derivation can
be found in the accompanying SM [89].

As mentioned earlier, the Gorkov-Dyson equation can be
derived from the equation of motion for G. The resulting
self-energy expression is

�(11′) = −i

(
v(12−−; 32′−) 0

0 −v(32+; 12′++)

)

× G2(2′3; 23′)G−1(3′1′), (19)

where G2 is a Nambu generalization of the two-body Green’s
function

G2(12; 1′2′) = (−i)2〈�0|T̂
[(

ψ̂ (1)ψ̂ (2)ψ̂†(2′)ψ̂†(1′) ψ̂ (1)ψ̂ (2)ψ̂ (2′)ψ̂†(1′)

ψ̂ (1)ψ̂†(2)ψ̂†(2′)ψ̂†(1′) ψ̂ (1)ψ̂†(2)ψ̂ (2′)ψ̂†(1′)

)]
|�0〉. (20)

The Schwinger relation of Eq. (13) can be extended to G2 in order to obtain a closed set of equations for G,

G2(12; 1′2′) =

⎛
⎜⎜⎜⎜⎝

−2
δGee(1′2′)
δU hh(12)

− Gee(1′2′)Ghh(12) −2
δGeh(1′2′)
δU hh(12)

− Geh(1′2′)Ghh(12)

−2
δGhe(12′)
δU ee(21′)

− Ghe(12′)Gee(21′) −2
δGhh(12′)
δU ee(21′)

− Ghh(12′)Gee(21′)

⎞
⎟⎟⎟⎟⎠. (21)

Substituting this relation into Eq. (19) leads to two self-energy terms. The term corresponding to the product of propagators
reads

�B(11′) = i

(
0 v(11′)Ghh(1′−1)

v(11′)Gee(1′+1) 0

)
, (22)

and is identified as the first-order static anomalous self-energy or Bogoliubov (B) self-energy. Therefore, the self-energy
stemming from the remaining term in the Schwinger relation, denoted as �Hxc, accounts for Hartree (H), exchange (x) and
correlation effects (c).

Through the link between the derivative of the Gorkov propagator and the derivative of the inverse Gorkov propagator (see
the SM [89]), �Hxc can be expressed as

�Hxc(11′) = 2i

(
v(12; 32′) 0

0 −v(32′; 12)

)

×
[(

Gee(2++3′) Geh(2++3′)
0 0

)
�hh(2′3; 3′1′) +

(
0 0

Ghe(2−−3′) Ghh(2−−3′)

)
�ee(32′; 3′1′)

]
, (23)

where the vertex functions have been defined as

�hh(12; 1′2′) = −δG−1(1′2′)
δU hh(1+2)

, �ee(12; 1′2′) = −δG−1(1′2′)
δU ee(12−)

. (24)
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The self-energy will now be expressed in terms of effective interactions in order to obtain an analog of Hedin’s equations.
Mathematically, this is done through the chain rule with respect to the two anomalous total potentials, namely, V ee = �ee

B + U hh

and V hh = �hh
B + U ee, which yields

�Hxc(11′) = i

[(
Gee(2++3′) Geh(2++3′)

0 0

)
{T he(12; 44′)�̃ee

(44′; 3′1′) + T hh(12; 44′)�̃hh
(44′; 3′1′)}

+
(

0 0
Ghe(2−−3′) Ghh(2−−3′)

)
{T ee(12; 44′)�̃ee

(44′; 3′1′) + T eh(12; 44′)�̃hh
(44′; 3′1′)}

]
, (25)

where the irreducible vertex functions,

�̃
hh

(12; 1′2′) = −δG−1(1′2′)
δV hh(12)

, �̃
ee

(12; 1′2′) = −δG−1(1′2′)
δV ee(12)

, (26)

and the effective interaction,

T (12; 1′2′) =
(

T he(12; 1′2′) T hh(12; 1′2′)
T ee(12; 1′2′) T eh(12; 1′2′)

)
= 2

(
v(12; 33′) 0

0 −v(33′; 12)

)⎛
⎜⎜⎝

δV ee(1′2′)
δU hh(3′+3)

δV hh(1′2′)
δU hh(3′+3)

δV ee(1′2′)
δU ee(33′−)

δV hh(1′2′)
δU ee(33′−)

⎞
⎟⎟⎠, (27)

have been introduced.
This effective interaction admits a Dyson equation

T (12; 1′2′) = −V̄ (12; 1′2′) − T (12; 33′)K̃(33′; 44′)V (44′+; 1′2′++), (28)

where the kernel K̃ is equal to

K̃(12; 1′2′) = i

⎛
⎜⎜⎜⎜⎝

δGee(1′2′)
δV ee(12)

δGhh(1′2′)
δV ee(12)

δGee(1′2′)
δV hh(12)

δGhh(1′2′)
δV hh(12)

⎞
⎟⎟⎟⎟⎠ = i

⎛
⎝[G(1′3)�̃

ee
(12; 33′)G(3′2′)]ee [G(1′3)�̃

ee
(12; 33′)G(3′2′)]hh

[G(1′3)�̃
hh

(12; 33′)G(3′2′)]ee [G(1′3)�̃
hh

(12; 33′)G(3′2′)]hh

⎞
⎠. (29)

The notation [G�̃
ee

G]ee stands for the ee block of the product matrix G�̃
ee

G. The Coulomb potential V is defined as

V (12+; 1′2′++) =
(

v(12+; 1′2′++) 0
0 v(1′2′−−; 12−)

)
, (30)

and V̄ is its antisymmetric counterpart, i.e., V̄ (12; 1′2′) = V (12; 1′2′) − V (12; 2′1′). Therefore, the irreducible vertex functions
appear both in the self-energy [see Eq. (25)] (outer vertex) and in the effective interaction (inner vertex).

Using the lowest-order approximations of �̃
hh

and �̃
ee

,

�̃
hh
0 (12; 1′2′) = 1

2

(
0 δ(1′1)δ(2′2) − δ(1′2)δ(2′1)
0 0

)
�̃

ee
0 (12; 1′2′) = 1

2

(
0 0

δ(1′1)δ(2′2) − δ(1′2)δ(2′1) 0

)
, (31)

the corresponding self-energy becomes

�Hxc(11′) = i

⎛
⎝Geh(22′)T he(12; 2′1′) Gee(22′)T hh(12; 2′1′)

Ghh(22′)T ee(12; 2′1′) Ghe(22′)T eh(12; 2′1′)

⎞
⎠, (32)

and the kernel of the T -matrix Dyson equation reads

K̃(12; 1′2′) = i

2
[δ(13)δ(23′) − δ(13′)δ(23)]

(
Geh(1′3)Ghe(3′2′) Ghh(1′3)Ghh(3′2′)

Gee(1′3)Gee(3′2′) Ghe(1′3)Geh(3′2′)

)
. (33)

The diagrams corresponding to each component of T ob-
tained with this kernel are represented, up to third order,
in Fig. 3. The two anomalous effective interactions have no
first-order terms. This is consistent with the above deriva-
tion as the self-energy �Hxc does not contain the first-order
anomalous self-energies [see Eqs. (22) and (23)]. Note that
this generalized T -matrix approximation was introduced by

Bozek using diagrammatic techniques to study superfluid nu-
clear matter [123]. Therefore, the present paper provides a
first-principle derivation of Bozek’s T matrix. It might also
be used to go beyond Bozek’s approximation by including
vertex corrections in T and/or �. For example, note that
the self-energy approximation of Eqs. (32) and (33) is not
complete up to second order in the Coulomb interaction. The
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FIG. 3. The effective interaction T computed with the lowest-
order vertex approximation results in a resummation of ladder
diagrams for each component. The exchange counterpart of each of
these diagrams should also be included but has not been represented
here. The double-arrowed propagators in T hh (T ee) represent Ghh

(Gee) [101].

missing second-order terms are recovered through the first
iteration of the pp Gorkov-Hedin equations as shown within
the SM [89]. Finally, the extension of conventional Hedin’s
equations to the Gorkov propagator [87] has been employed
to derive exchange-correlation energy functional for super-
conducting DFT [124–126]. Hence, the pp Gorkov-Hedin’s
equations might also provide additional insights into this field.

IV. T -MATRIX APPROXIMATION
AND VERTEX CORRECTIONS

Now that the pp Gorkov-Hedin equations have been de-
rived, a set of equations analog to Eqs. (1) will be recovered as
a limiting case (U → 0). We remind the reader that Ghe is the
normal propagator and, thus, we focus on the upper-left block
of the Gorkov-Dyson equation. This leads to the following
alternative system of equations

G(11′) = G0(11′) + G0(12)�(22′)G(2′1′), (34a)

�(11′) = iG(2′2++)T (12; 33′)�̃(33′; 2′1′), (34b)

T (12; 1′2′) = −v̄(12; 1′2′)

− T (12; 33′)K̃ (33′; 44′)v(44′+; 1′2′++), (34c)

K̃ (12; 1′2′) = iG(31′)G(3′2′)�̃(12; 33′), (34d)

�̃(12; 1′2′) = 1

2
[δ(1′2)δ(2′1) − δ(1′1)δ(2′2)]

−�pp(33′; 1′2′)G(43)G(4′3′)�̃(12; 44′),

(34e)

which is actually not closed because the pp kernel,

�pp(12; 1′2′) = δ�ee(1′2′)
δGee(12)

∣∣∣∣
U=0

, (35)

explicitly depends on the anomalous self-energy �ee. There-
fore, to compute vertex corrections in this framework, one first
needs to compute the corresponding vertex correction for �

[see Eq. (32)] and then take the number-conserving limit.
The vertex corrections to � are computed follow-

ing Mejuto-Zaera and Vlček’s procedure for Hedin’s

self-consistency [43] (see also Ref. [42]). Schematically, this
is done by starting from a self-energy approximation and com-
puting the associated vertex. The latter is then inserted back
in the self-energy and the effective interaction. Each iteration,
therefore, produces a richer self-energy approximation. The
derivation is explicitly performed in the SM [89] and the cor-
responding expressions are discussed below. We emphasize
that while Gee and Ghh appear in the self-consistency process
mentioned above, they vanish in the number-conserving limit.
Therefore, the final expressions of � and T depend only on
G and v. These anomalous propagators are never computed
in practice but are only employed as intermediates during the
derivation.

The analog of the GW approximation for this set is ob-
tained by setting the inner and outer vertices to �̃(12; 1′2′) =
1
2 [δ(1′2)δ(2′1) − δ(1′1)δ(2′2)]. The resulting self-energy is

�(11′) = iG(2′2++)T (12; 1′2′), (36)

with the effective interaction

T (12; 1′2′) = −v̄(12; 1′2′)

− T (12; 33′)K0(33′; 44′)v(44′+; 1′2′++), (37)

and

K0(12; 1′2′) = i

2
[G(12′)G(21′) − G(22′)G(11′)], (38)

where the kernel is recognized to be the noninteracting pp
propagator. Therefore, this approximate self-energy is exactly
the T -matrix approximation computed at the pp-RPA level.

While the above derivation of the pp T matrix is ele-
gant, this approximation was already well known. However,
this formalism offers a new systematic path to include cor-
rections on top of the T -matrix approximation through the
irreducible vertex function �̃. In the remainder of this sec-
tion, vertex corrections to the self-energy and, in a second
stage, to the irreducible pp propagator K̃ will be discussed.
Note that, in the context of traditional Hedin’s equations,
improving the self-energy without improving the effective
interaction (and vice versa) has produced mixed results
[3,42,43,74,78,79,81,82,84].

The lowest-order term of the Gorkov irreducible vertex
function arising at the first iteration is of first order in the
effective interaction T (see the SM [89]). Following Eq. (34d),
the component of interest in the normal phase (U = 0) is
given by

T ee(3′7; 7′1′)
2

[Ghh(74′)Ghh(47′) − Ghh(7′4′)Ghh(47)]
∣∣∣
U=0

= 0, (39)

which means that there is no self-energy correction of second
order in T in the number-conserving limit. Hence, the first
nonzero self-energy terms beyond Eq. (36) are of third order
in T . This could have been anticipated as the T -matrix self-
energy is exact up to second-order in the Coulomb interaction.

To exemplify the possibility of going beyond Eq. (36), we
report a third-order self-energy term that is nonzero in the
absence of pairing fields. This term is naturally obtained at
the second iteration of the pp Hedin equations (see the SM

115155-6



ANOMALOUS PROPAGATORS AND THE … PHYSICAL REVIEW B 110, 115155 (2024)

FIG. 4. A third-order self-energy term arising through the second
iteration of the pp Hedin equations.

[89]) and reads

−i2G(2′2++)T (12; 33′)T (66′; 2′8)G(8−−8′)

× T (8′7; 7′1′)G(7′6′)G(3′7)G(36). (40)

The lowest-order diagram in v contained in Eq. (40) is repre-
sented in Fig. 4. Equation (40) is diagrammatically equivalent
to the third-order GW bubble diagram where the Coulomb
interaction has been replaced by the effective interaction T .
This is fully analogous to the screened ladder diagrams that
arise through the vertex corrections to the GW self-energy in
conventional Hedin’s equations [42,43].

For the same reason as above, the lowest-order inner-vertex
corrections are of second order in T . Using the same irre-
ducible vertex as the one giving rise to Eq. (40) (see the
SM [89]) leads to the following term for the irreducible pp
propagator

−G(31′)G(3′2′)T (66′; 38)G(8−−8′)G(7′6′)

× T (8′7; 7′3′)
2

[G(27)G(16) − G(26)G(17)]. (41)

This term should be added to K0 and used to compute a new
effective interaction using Eq. (34b). Figure 5 displays the
lowest-order diagram in v contained in the above equation.
It corresponds to the propagation of two particles interacting
through a second-order screened interaction. The term de-
rived in Eq. (41) corresponds to a similar process where the
bare Coulomb interaction has been replaced by the effective
interaction T . This shows that the inner-vertex corrections in-
troduce screening in K̃ and, hence, in the effective interaction.

Including the self-energy term of Eq. (40) as well as the
inner-vertex correction of Eq. (41) is expected to be valu-
able in systems were pairing correlations are dominant but
screening is non-negligible. For example, pairing correlations
are essential to qualitatively describe the 6 eV satellite of
nickel but screening is also necessary for quantitative agree-
ment [53,54]. In a different context, Pisani and coworkers
have shown that going beyond the T -matrix approximation,
in particular including screening, is essential to describe the
physics of the BCS-BEC crossover in Fermi gases [127,128].
The ladder and bubble diagrams have also been considered

FIG. 5. A second-order irreducible pp propagator term arising
through the second iteration of the pp Hedin equations.

simultaneously, through the FLEX approximation [129,130],
to study superconductivity [131,132].

V. CONCLUSIONS

In this paper, we introduced a system of equations for the
one-body propagator G. The lowest-order self-energy approx-
imation coming from this set is the well-known pp T -matrix
approximation, where T is computed at the pp-RPA level.
Self-consistently iterating this set formally leads to a pertur-
bative expansion of the self-energy with respect to the pp
T matrix. This procedure parallels the self-energy expansion
in terms of the screened interaction W obtained through the
conventional form of Hedin’s equations. Therefore, we refer
to this new set as pp Hedin’s equations. More importantly, this
framework allows us to derive, from first principles, vertex
corrections to the T -matrix approximation.

The pp Hedin equations have been obtained by first de-
riving a closed set of equations for the Gorkov propagator in
the presence of an external pairing potential and then taking
the limit of a vanishing potential. Indeed, the pp T -matrix
interaction naturally appears when one seeks the response
of an anomalous propagator to a pairing field. Consequently,
this derivation is thus more appropriately performed in the
Nambu-Gorkov framework rather than considering solely the
normal one-body propagator.

Starting from the pp Gorkov-Hedin equations, the simplest
form of the irreducible vertex function leads to the generalized
T -matrix self-energy introduced by Bozek to study superfluid
nuclear matter [123]. This new functional derivative perspec-
tive brings complementary insight into Bozek’s diagrammatic
derivation. For example, Bozek’s T -matrix self-energy is not
complete up to second-order in the Coulomb interaction and
we show that these missing terms arise through the lowest-
order vertex correction.

This lowest-order vertex correction to the self-energy, of
second-order in T , turns out to be zero in the normal phase.
The first nonvanishing outer- and inner-vertex corrections are
obtained by performing a second iteration of the pp Hedin
equations and is thus of third order in T . Diagrammatically,
the self-energy term corresponds to the two-bubble GW self-
energy diagram where the bare Coulomb lines have been
replaced by T . Once again, a parallel can be drawn with
conventional Hedin’s equations, where the vertex function
generates screened ladder self-energy diagrams. The inner-
vertex correction to the pp propagator has also been shown
to include screening diagrams in the approximation.

Because the first inner- and outer-vertex corrections in the
normal phase are of second and third order in T , respectively,
this approach is likely computationally too expensive in prac-
tice. (See, for example, Ref. [84] where it has been shown
that computing the dynamical self-energy of second-order in
W leads to a drastic increase of the computational cost. Note
that, as for GW , this scaling could be reduced using low-order
scaling techniques such as density fitting.) In addition, con-
sidering only inner- or outer-vertex corrections has produced
mixed outcomes in the GW case [3,42,43,74,78,79,81,82,84].
This might also be the case for the T -matrix approxima-
tion. Therefore, an alternative route might be to combine W
and T . This has already been explored in various ways, for
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example, by replacing the Coulomb interaction with
a screened interaction in ladder self-energy diagrams
[49,51,53,57]. The fluctuation exchange approximation of
Bickers and coworkers involves summing the GW and T -
matrix channels (without double counting) [54,129,130,133].
The Fadeev RPA [134–137], parquet theory [86], and
multichannel Dyson formalisms [138,139] constitute other
alternatives to approximately couple the various scattering
channels. We believe that the Gorkov propagator might of-
fer yet another way to combine them and is currently being
investigated in our group.

Finally, note that this study focused on using anomalous
quantities to compute the one-body propagator. Therefore, a
natural extension would be to consider these quantities within

the two-body Bethe-Salpeter equation. In particular, it can be
shown that pairing propagators and anomalous self-energies
offer a convenient framework to compute the kernel of the
pp Bethe-Salpeter equation. Research in this direction is cur-
rently underway and will be presented in a subsequent study.
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