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This document provides additional information to the accompanying manuscript. The first section follows the outline of Section
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We adopt the following notations:
• r represents spatial variables, while x represents space-spin variables.

• The integers 1, 1′, 2, 2′, . . . are shortcut notations. For example, we have 1 = (x1, t1) where t1 is a time variable and
x1 = (σ1, r1) is a composite spin-space variable.

• The symbols p, q, r, s refer to arbitrary spin-orbitals, while i, j indicate occupied spin-orbitals, and a, b denote virtual spin-
orbitals.

I. GW in theory

The GW method aims to provide a detailed description of the electronic structure and spectral properties of materials by
utilizing the one-body Green’s function, which is defined as

G(11′) = (−i)
〈
ΨN

0

∣∣∣T̂ [
ψ̂(1) ψ̂†(1′)

]∣∣∣ΨN
0

〉
, (1)

where ΨN
0 is the exact N-electron ground state and T̂ is the time-ordering operator

T̂
[
ψ̂(1) ψ̂†(1′)

]
= Θ(t1 − t1′ ) ψ̂(1) ψ̂†(1′) − Θ(t1′ − t1) ψ̂†(1′) ψ̂(1). (2)

Here, Θ is the Heaviside function, while ψ̂(1) and ψ̂†(1′) represent second-quantized annihilation and creation field operators in
the Heisenberg picture, respectively. These operators are defined as follows

ψ̂(1) = ψ̂(x1t1) = eiĤt1 ψ̂(x1)e−iĤt1 , ψ̂†(1) = ψ̂†(x1t1) = eiĤt1 ψ̂†(x1)e−iĤt1 , (3)

where ψ̂(x) and ψ̂†(x) are field operators in the Schrödinger picture. They are responsible for, respectively, annihilating and
creating a particle with spin σ and position r. Here Ĥ is the Hamiltonian

Ĥ =

∫
d(x1x1′ ) ψ̂†(x1) h(x1x1′ ) ψ̂(x1′ ) +

1
2

"
d(x1x2x1′x2′ ) ψ̂†(x1) ψ̂†(x2) v(x1x2; x1′x2′ ) ψ̂(x2′ ) ψ̂(x1′ ), (4)

where the four-point Coulomb interaction is defined as

v(x1x2; x1′x2′ ) = δ(x1 − x1′ )
1

|r1 − r2|
δ(x2 − x2′ ). (5)

Because the Hamiltonian is time-independent, G(11′) depends only on the time difference t1 − t1′ . Inserting the resolution of the
identity obtained from the complete spectrum of the (N ± 1)-electron systems∑

S

∣∣∣ΨN+1
S

〉〈
ΨN+1

S

∣∣∣ = Î,
∑

S

∣∣∣ΨN−1
S

〉〈
ΨN−1

S

∣∣∣ = Î, (6)

(where Î is the identity operator) between the field operators, and then performing the Fourier transform of the one-body Green’s
leads to its well-known Lehman representation

G(x1x1′ ;ω) = lim
η→0+

∑
S

 IS (x1)I∗S (x1′ )

ω − (EN
0 − EN−1

S ) − iη
+

AS (x1)A∗S (x1′ )

ω − (EN+1
0 − EN

S ) + iη

 . (7)
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where η is a positive infinitesimal, EN
0 is the ground state energy of the N-electron system, EN+1

S and EN−1
S are the excited state

energy of the (N ± 1)-electron systems, respectively. The numerators are defined as follows

IS (x) =
〈
ΨN−1

S

∣∣∣ψ̂(x)
∣∣∣ΨN

0

〉
, AS (x) =

〈
ΨN

0

∣∣∣ψ̂(x)
∣∣∣ΨN+1

S

〉
, (8)

and are commonly referred to as the Lehmann amplitudes or Dyson orbitals. The exact expression for G as given in Eq. (7) can be
approximated within the framework of the quasiparticle picture, resulting in the following representation

G(x1x1′ ;ω) =
∑

i

ϕi(x1)ϕ∗i (x1′ )
ω − εi − iη

+
∑

a

ϕa(x1)ϕ∗a(x1′ )
ω − εa + iη

. (9)

In this context, ϕp signifies a complete set of one-electron functions describing quasiparticles, while εp designates the corresponding
quasiparticle energies.

A. Equation of motion for the one-body Green’s function

The success of the GW approximation, as well as other Green’s function-based approximations, arises from the ability to
compute sufficiently accurate approximations of G without the need for explicit reference to the wave function

∣∣∣ΨN
0

〉
. This is

achieved thanks to a closed set of equations for G. The derivation of this set commences with an examination of the equation of
motion (EOM) for the one-body Green’s function. As an initial step toward its formulation, we must derive the EOM for the field
operator

∂ψ̂(1)
∂t1

=
∂
(
eiĤt1 ψ̂(x1)e−iĤt1

)
∂t1

=
∂
(
eiĤt1

)
∂t1

ψ̂(x1)e−iĤt1 + eiĤt1 ψ̂(x1)
∂
(
e−iĤt1

)
∂t1

= iĤψ̂(1) − iψ̂(1)Ĥ = −i
[
ψ̂(1), Ĥ

]
.

It can be easily demonstrated that this commutator is expressed as[
ψ̂(x), Ĥ

]
=

∫
dx1′ h(xx1′ ) ψ̂(x1′ ) +

∫
dx2dx1′dx2′ v(xx2; x1′x2′ ) ψ̂†(x2) ψ̂(x2′ ) ψ̂(x1′ ).

We are now ready to derive the EOM for the one-body Green’s function

i
∂G(11′)
∂t1

=
∂

∂t1

[
Θ(t1 − t1′ )

〈
ΨN

0

∣∣∣ψ̂(1)ψ̂†(1′)
∣∣∣ΨN

0

〉
− Θ(t1′ − t1)

〈
ΨN

0

∣∣∣ψ̂†(1′)ψ̂(1)
∣∣∣ΨN

0

〉]
= δ(t1 − t1′ )

〈
ΨN

0

∣∣∣ψ̂(1)ψ̂†(1′)
∣∣∣ΨN

0

〉
+ δ(t1′ − t1)

〈
ΨN

0

∣∣∣ψ̂†(1′)ψ̂(1)
∣∣∣ΨN

0

〉
+ Θ(t1 − t1′ )

〈
ΨN

0

∣∣∣∂ψ̂(1)
∂t1

ψ̂†(1′)
∣∣∣ΨN

0

〉
− Θ(t1′ − t1)

〈
ΨN

0

∣∣∣ψ̂†(1′)∂ψ̂(1)
∂t1

∣∣∣ΨN
0

〉
= δ(t1 − t1′ )

〈
ΨN

0

∣∣∣ψ̂(1)ψ̂†(1′) + ψ̂†(1′)ψ̂(1)
∣∣∣ΨN

0

〉
+ Θ(t1 − t1′ )

〈
ΨN

0

∣∣∣(−i
[
ψ̂(1), Ĥ

])
ψ̂†(1′)

∣∣∣ΨN
0

〉
− Θ(t1′ − t1)

〈
ΨN

0

∣∣∣ψ̂†(1′) (−i
[
ψ̂(1), Ĥ

])∣∣∣ΨN
0

〉
= δ(11′) − i

[
Θ(t1 − t1′ )

〈
ΨN

0

∣∣∣∫ dx3h(x1x3)ψ̂(x3t1)ψ̂†(1′)
∣∣∣ΨN

0

〉
− Θ(t1′ − t1)

〈
ΨN

0

∣∣∣ψ̂†(1′) ∫ dx3h(x1x3)ψ̂(x3t1)
∣∣∣ΨN

0

〉]
− iΘ(t1 − t1′ )

〈
ΨN

0

∣∣∣[∫ dx2dx3dx2′v(x1x2; x3x2′ )ψ̂†(x2t1)ψ̂(x2′ t1)ψ̂(x3t1)
]
ψ̂†(1′)

∣∣∣ΨN
0

〉
+ iΘ(t1′ − t1)

〈
ΨN

0

∣∣∣ψ̂†(1′)[∫ dx2dx3dx2′v(x1x2; x3x2′ )ψ̂†(x2t1)ψ̂(x2′ t1)ψ̂(x3t1)
]∣∣∣ΨN

0

〉
= δ(11′) +

∫
dx3 h(x1x3) G(x3t1, 1′) − i

∫
dx2dx3dx2′ v(x1x2; x3x2′ )[

Θ(t1 − t1′ )
〈
ΨN

0

∣∣∣ψ̂†(x2t1)ψ̂(x2′ t1)ψ̂(x3t1)ψ̂†(1′)
∣∣∣ΨN

0

〉
− Θ(t1′ − t1)

〈
ΨN

0

∣∣∣ψ̂†(1′)ψ̂†(x2t1)ψ̂(x2′ t1)ψ̂(x3t1)
∣∣∣ΨN

0

〉]
= δ(11′) +

∫
d3 h(13)G(31′) − i

∫
dx2dx3dx2′v(x1x2; x3x2′ )[

Θ(t1 − t1′ )
〈
ΨN

0

∣∣∣ψ̂†(x2t1)ψ̂(x2′ t1)ψ̂(x3t1)ψ̂†(1′)
∣∣∣ΨN

0

〉
− Θ(t1′ − t1)

〈
ΨN

0

∣∣∣ψ̂†(1′)ψ̂†(x2t1)ψ̂(x2′ t1)ψ̂(x3t1)
∣∣∣ΨN

0

〉]
,

where h(12) = δ(t1 − t2) h(x1x2) and the element di ≡ dxidti represents integration over both time and space. At this point, it is
natural to try to use the two latter terms to form the two-body Green’s function G2 which is defined as

G2(12; 1′2′) = (−i)2
〈
ΨN

0

∣∣∣T̂ [ψ̂(1)ψ̂(2)ψ̂†(2′)ψ̂†(1′)]
∣∣∣ΨN

0

〉
. (10)

S2



To achieve this, a time-ordering operator is required. However, since three field operators share the same time, the time-ordering
operator cannot be unambiguously defined. To overcome this issue, a workaround involves introducing a small time shift using a
positive infinitesimal η (ti+ = ti + η, ti++ = ti + 2η, and so on), as follows

− i
∫

d(x2x3x2′ ) v(x1x2; x3x2′ )

× lim
η→0+

[
Θ(t1 − t1′ )

〈
ΨN

0

∣∣∣ψ̂†(x2t1++ )ψ̂(x2′ t1+ )ψ̂(x3t1)ψ̂†(1′)
∣∣∣ΨN

0

〉
− Θ(t1′ − t1)

〈
ΨN

0

∣∣∣ψ̂†(1′)ψ̂†(x2t1++ )ψ̂(x2′ t1+ )ψ̂(x3t1)
∣∣∣ΨN

0

〉]
= −i

∫
d(x2x3x2′ ) v(x1x2; x3x2′ ) lim

η→0+

〈
ΨN

0

∣∣∣T̂ [ψ̂†(x2t1++ )ψ̂(x2′ t1+ )ψ̂(x3t1)ψ̂†(1′)]
∣∣∣ΨN

0

〉
= +i

∫
d(x2x3x2′ ) v(x1x2; x3x2′ ) lim

η→0+

〈
ΨN

0

∣∣∣T̂ [ψ̂(x3t1)ψ̂(x2′ t1+ )ψ̂†(x2t1++ )ψ̂†(1′)]
∣∣∣ΨN

0

〉
= −i

∫
d(x2x3x2′ ) v(x1x2; x3x2′ ) lim

η→0+
G2(x3t1x2′ t1+ ; x1′ t1′x2t1++ )

= −i lim
η→0+

∫
d(x2x3x2′ )

∫
d(t2t3t2′ ) v(x1x2; x3x2′ ) δ(t2 − t1) δ(t2′ − t1) δ(t3 − t1) G2(x3t3x2′ t2′+ ; x1′ t1′x2t2++ )

= −i lim
η→0+

∫
d
(
232′

)
v(12; 32′) G2(32′+; 1′2++).

The instantaneous Coulomb interaction is defined as follows

v(12; 1′2′) = v(x1x2; x1′x2′ ) δ(t1 − t2) δ(t1 − t1′ ) δ(t2 − t2′ )

= δ(11′)
δ(t1 − t2)
|r1 − r2|

δ(22′).
(11)

The EOM of G becomes∫
d3

[
iδ(13)

∂

∂t3
− h(13)

]
G(31′) + lim

η→0+
i
∫

d
(
232′

)
v(12; 32′) G2(32′+; 1′2++) = δ(11′). (12)

From now on, we omit the symbol limη→0+ .

B. The self-energy

The non-interacting one-body Green’s function is defined as∫
d3

[
iδ(13)

∂

∂t3
− h(13)

]
G0(31′) = δ(11′) ⇔

[
iδ(13)

∂

∂t3
− h(13)

]
= G−1

0 (13) (13)

and its inverse can be identified in the EOM (12). Therefore, if we multiply by G0(71) and integrate over 1, we obtain∫
d3G−1

0 (13)G(31′) + i
∫

d
(
232′

)
v(12; 32′) G2(32′+; 1′2++) = δ(11′)

⇒

∫
d(13) G0(71) G−1

0 (13) G(31′) + i
∫

d
(
1232′

)
G0(71) v(12; 32′) G2(32′+; 1′2++) =

∫
d1 G0(71) δ(11′)

⇒ G(11′) = G0(11′) − i
∫

d
(
232′5

)
G0(15) v(52; 32′) G2(32′+; 1′2++)

⇒ G(11′) = G0(11′) +

∫
d(57) G0(15)

[
−i

∫
d
(
232′6

)
v(52; 32′) G2(32′+; 62++) G−1(67)

]
G(71′).

This equation can be written as the famous Dyson equation,

G(11′) = G0(11′) +

∫
d(23) G0(12) Σ(23) G(31′). (14)

The total self-energy, encompassing the Hartree-exchange-correlation components, is defined as

Σ(11′) = −i
∫

d
(
232′3′

)
v(12; 3′2′) G2(3′2′+; 32++) G−1(31′). (15)

By multiplying Eq. (14) to the right by G−1 and to the left by G−1
0 , integrating and relabeling, it is possible to recast it in the

equivalent inverse form

G−1(11′) = G−1
0 (11′) − Σ(11′). (16)
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C. Closed-set equations in terms of the Coulomb potential

The next step is to express the self-energy in terms of G and the crucial element to do so is the Schwinger relation

δG(11′; [U])
δU(2′2)

∣∣∣∣∣
U=0

= −G2(12; 1′2′) + G(11′) G(22′). (17)

where G(11′; [U]) is the one-body Green’s function in presence of an external potential. It is obtained using Eq. (1) as well but
with this additional term in the Hamiltonian

Û =

∫
dx2dx2′ ψ̂

†(2′)U(2′2)ψ̂(2) with U(2′2) = Θ(t2′ − t2)U(r2′r2; t2′ − t2). (18)

The Schwinger relation allows to express G2 in terms of the one-body Green’s function and its derivative with respect to an
external potential U. For the sake of conciseness, we will omit the explicit dependence on the potential U in G and we emphasize
that all quantities are evaluated at U = 0.

The self-energy can now be expressed in terms of G and its derivative as

Σ(11′) = −i
∫

d
(
22′34

)
v(12; 3′2′)

[
G(3′3) G(2′+2++) −

δG(3′3)
δU(2++2′+)

]
G−1(31′)

= −i
∫

d
(
22′

)
v(12; 1′2′) G(2′2+) + i

∫
d
(
22′33′

)
v(12; 3′2′)

δG(3′3)
δU(2+2′)

G−1(31′).

The first term reduces to the usual Hartree self-energy

ΣH(11′) = vH(11′)

= −i
∫

d
(
22′

)
v(12; 1′2′) G(2′2+)

= −i
∫

d(x2x2′ ) v(x1x2; x1′x2′ ) G(x2′x2;−η).

(19)

Therefore, the remaining term encapsulates all the exchange-correlation effects and the self-energy can be rewritten as Σ(11′) =

ΣH(11′) + Σxc(11′). The latter term of the self-energy can be further developed using the following relationship

δG(3′3)
δU(2+2′)

= −

∫
d(56) G(3′5)

δG−1(56)
δU(2+2′)

G(63). (20)

derived from the definition of the inverse one-body Green’s function. This results in

Σxc(11′) = −i
∫

d
(
22′356

)
v(12; 3′2′) G(3′5)

δG−1(56)
δU(2+2′)

δ(61′)

= i
∫

d
(
22′33′

)
v(12; 32′) G(33′) Γ(3′2′; 1′2+),

where we have introduced the vertex function

Γ(12; 1′2′) = −
δG−1(11′)
δU(2′2)

. (21)

The final step to obtain a closed set of equations is to derive the Dyson equation for the vertex function using the Dyson
equation for G in presence of an external potential

G−1(11′) = G−1
0 (11′) − U(11′) − Σ(11′), (22)

which gives

Γ(12; 1′2′) =
δU(11′)
δU(2′2)

+
δΣ(11′)
δU(2′2)

= δ(12′) δ(1′2) +

∫
d
(
33′

) δΣ(11′)
δG(33′)

δG(33′)
δU(2′2)

= δ(12′) δ(1′2) −
∫

d
(
33′

) δΣ(11′)
δG(33′)

∫
d
(
44′

)
G(34)

δG−1(44′)
δU(2′2)

G(4′3′)

= δ(12′) δ(1′2) +

∫
d
(
33′44′

)
Ξ(13′; 1′3) G(34) G(4′3′) Γ(42; 4′2′),
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where we have introduced the kernel function

Ξ(12; 1′2′) =
δΣ(11′)
δG(2′2)

. (23)

In summary, the closed set of equations that determine G can be expressed as follows

G(11′) = G0(11′) + G0(12) Σ(22′) G(2′1′), (24a)

Σ(11′) = ΣH(11′) + i
∫

d
(
22′33′

)
v(12; 32′) G(33′) Γ(3′2′; 1′2+), (24b)

Γ(12; 1′2′) = δ(12′) δ(1′2) +

∫
d
(
33′44′

)
Ξ(13′; 1′3) G(34) G(4′3′) Γ(42; 4′2′). (24c)

D. Closed-set equations in terms of the screened Coulomb potential: Hedin’s equations

The set derived in the previous section leads to an expansion of the self-energy order by order with respect to the Coulomb
interaction v. Unfortunately, despite being a natural way to build the self-energy, this expansion converges slowly. An alternative
set of self-consistent equations, referred to as Hedin’s equations, can be derived in a similar manner and yields a closed set of
equations in terms of the screened Coulomb potential W instead of v. The expansion of the self-energy in terms of W converges
much faster. Hence, this set of equations has been much more successful than the one above. The main idea behind the derivation
of Hedin’s equation is to use the chain rule with respect to the total classical potential, defined as the sum of the external and
Hartree potentials, vH,ext(11′) = ΣH(11′) + U(11′), instead of the sole external potential. The self-energy can be rewritten as
Σ(11′) = ΣH(11′) + Σxc(11′), with

Σxc(11′) = −i
∫

d
(
22′33′

)
v(12; 32′) G(33′)

δG−1(3′1′)
δU(2+2′)

= −i
∫

d
(
22′33′44′

)
v(12; 32′) G(33′)

δG−1(3′1′)
δvH,ext(4′4)

δvH,ext(4′4)
δU(2+2′)

= i
∫

d
(
22′33′44′

)
v(12; 32′) G(33′) Γ̃(3′4; 1′4′) ε−1(4′2′; 42+),

where

Γ̃(12; 1′2′) =
δG−1(11′)
δvH,ext(2′2)

(25)

is irreducible four-point vertex and

ε−1(12; 1′2′) =
δvH,ext(11′)
δU(2′2)

(26)

is the inverse dielectric matrix. Upon introduction of the four-point screened interaction

W(12; 1′2′) =

∫
d
(
33′

)
v(13; 1′3′) ε−1(23′; 2′3+), (27)

we may write the exchange-correlation self-energy as

Σxc(11′) = i
∫

d
(
22′33′

)
G(33′) W(12′; 32) Γ̃(3′2; 1′2′). (28)

This can be easily verified to be equivalent to its well-known three-point counterpart.
On the other hand, the expression for the inverse dielectric matrix can be developed as follows

ε−1(12′; 1′2) =
δ (U(11′) + ΣH(11′))

δU(22′)

= δ(12) δ(1′2′) − i
∫

d
(
33′

)
v(13; 1′3′) L(3′2′; 3+2).

Here, L is the electron-hole correlation function (or the four-point reducible polarizability up to a −i factor)

L(12; 1′2′) =
δG(11′)
δU(2′2)

. (29)
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Using the previous equations, the expression of the screened potential can be expressed as

W(12; 1′2′) =

∫
d
(
33′

)
v(13; 1′3′) ε−1(23′; 2′3+)

=

∫
d
(
33′

)
v(13; 1′3′)

(
δ(3+2) δ(3′2′) − i

∫
d
(
44′

)
v(24; 2′4′) L(4′3′; 4+3+)

)
= v(12−; 1′2′) − i

∫
d
(
343′4′

)
v(13; 1′3′) L(4′3′; 4+3+) v(24; 2′4′).

(30)

This expression is typically represented in its Dyson form

W(12; 1′2′) = v(12−; 1′2′) − i
∫

d
(
343′4′

)
v(13; 1′3′)

(∫
d
(
55′

)
L̃(4′5′; 4+5) ε−1(53′; 5′3+)

)
v(24; 2′4′)

= v(12−; 1′2′) − i
∫

d
(
454′5′

)
W(15; 1′5′) L̃(4′5′; 4+5) v(24; 2′4′),

(31)

where we have introduced the irreducible four-point polarizability

L̃(12; 1′2′) =
δG(11′)

δvH,ext(2′2)
. (32)

which is linked to its reducible counterpart through

L(3′2′; 32) =

∫
d
(
44′

) δG(3′3)
δvH,ext(44′)

δvH,ext(44′)
δU(22′)

=

∫
d
(
44′

)
L̃(3′4′; 34) ε−1(42′; 4′2)

=

∫
d
(
44′

)
L̃(3′4′; 34)

[
δ(24) δ(2′4′) − i

∫
d
(
55′

)
v(45; 4′5′) L(5′2′; 5+2)

]
= L̃(3′2′; 32) − i

∫
d
(
44′55′

)
L̃(3′4′; 34) v(45; 4′5′) L(5′2′; 5+2).

The two-point counterpart of L̃ is often called P. This equation can be brought to the equivalent form

L−1(12; 1′2′) = L̃−1(12; 1′2′) + i v(12−; 1′2′). (33)

in a similar way as the Dyson equation of Eq. (16). This identity will be valuable to evaluate the matrix elements of L. The
definition of the inverse of a 4-point function is recalled for the sake of completeness∫

d(33′) L(13; 1′3′) L−1(3′2; 32′) = δ(12′) δ(1′2). (34)

The irreducible polarizability L̃ can be expressed in terms of Γ̃ as well

L̃(12; 1′2′) =
δG(11′)

δvH,ext(2′2)

=

∫
d
(
33′

)
G(13)

δG−1(33′)
δvH,ext(2′2)

G(3′1′)

=

∫
d
(
33′

)
G(13) G(3′1′) Γ̃(32; 3′2′).

Hence, the final ingredient missing to close the equations is an equation for the irreducible four-point vertex. The Dyson
equation for Γ̃ is exactly the same as the one derived above for its reducible counterpart except that only the exchange-correlation
part of the kernel contributes

Γ̃(12; 1′2′) = δ(12′) δ(1′2) +

∫
d
(
33′44′

)
Ξxc(13′; 1′3) G(34) G(4′3′) Γ̃(42; 4′2′), (35)
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where

Ξxc(12′; 1′2) =
δΣxc(11′)
δG(22′)

. (36)

Finally, the five equations constituting Hedin’s equations in the four-point formalism are

G(11′) = G0(11′) + G0(12) Σ(22′) G(2′1′), (37a)

Σ(11′) = ΣH(11′) + i
∫

d
(
22′33′

)
G(33′) W(12′; 32) Γ̃(3′2; 1′2′), (37b)

Γ̃(12; 1′2′) = δ(12′) δ(1′2) +

∫
d
(
33′44′

)
Ξ(13′; 1′3) G(34) G(4′3′) Γ̃(42; 4′2′), (37c)

W(12; 1′2′) = v(12−; 1′2′) − i
∫

d
(
343′4′

)
W(14; 1′4′) L̃(3′4′; 3+4) v(23; 2′3′), (37d)

L̃(12; 1′2′) =

∫
d
(
33′

)
G(13) G(3′1′) Γ̃(32; 3′2′). (37e)

E. GW approximation

The GW approximation is obtained now by considering only the first term in the vertex, i.e., Γ̃(12; 1′2′) ≈ δ(12′) δ(1′2). The
set of Hedin’s equations becomes

G(11′) = G0(11′) + G0(12) Σ(22′) G(2′1′), (38a)

Σ(11′) = ΣH(11′) + i
∫

d
(
22′

)
G(22′) W(12′; 21′), (38b)

W(12; 1′2′) = v(12−; 1′2′) − i
∫

d
(
343′4′

)
W(14; 1′4′) L̃(3′4′; 3+4) v(23; 2′3′), (38c)

L̃(12; 1′2′) = G(12′) G(21′). (38d)

Note that the last line is consistent with the random-phase approximation (RPA), i.e., L̃GW = L̃RPA. Instead of the non-interacting
G0, it is common practice to begin a calculation with a mean-field (Hartree-Fock) starting point∫

d3
[
iδ(13)

∂

∂t3
− F(13)

]
GHF(31′) = δ(11′) ⇔

[
iδ(13)

∂

∂t3
− F(13)

]
= G−1

HF(13). (39)

Here, F(13) = h(13) + ΣH(13) + Σx(13) represents the Fock operator where vH and vx are the Hartree and exchange potentials.
The expression of the exchange self-energy is recalled for the sake of completeness

Σx(13) = iG(13)vc(1+3) (40)

Using the Hartree-Fock Green’s function GHF, the Dyson equation becomes

G(11′) = GHF(11′) −
∫

d(23) GHF(12) Σc(23) G(31′) ⇔ G−1(11′) = G−1
HF(11′) − Σc(11′) (41)

where the correlation self-energy is defined as Σc(11′) = Σ(11′) − ΣH(11′) − Σx(11′). Note that the Lehman representation of GHF
[see Eq. (9)] involves the HF orbitals and their corresponding one-electron energies. The latter are the poles of the (approximate)
HF Green’s function. Hence, they represent approximate ionization potentials and electron affinities which is consistent with
Koopmans’ theorem.4

II. GW in practice

The aim of this section is to compute the expressions for the matrix elements that need to be implemented in a GW code. It is
divided into three parts: the RPA polarizability, the screened interaction, and the self-energy.

A. RPA polarizability

The irreducible polarizability in the usual GW approximation is

L̃(12; 1′2′) = G(12′) G(21′), (42)
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and the equation for the reducible polarizability derived above is recalled

L−1(12; 1′2′) = L̃−1(12; 1′2′) + i v(12−; 1′2′).

These two polarizabilities depend on three time differences: t1 − t1′ , t2 − t2′ , and (t1 + t1′)/2 − (t2 + t2′)/2. In Hedin’s equations,
these polarizabilities are required when t1 = t1′ and t2 = t2′ . Therefore, the required quantities depend only on τ12 = t1 − t2.

The Fourier transform of L̃ with respect to τ12 reads

L̃(x1x2; x1′x2′ ;ω) =

∫
dτ12 eiωτ12 L̃(x1x2; x1′x2′ ; τ12)

=

∫
dτ12 eiωτ G(x1x2′ ; τ12) G(x2x1′ ;−τ12)

=

∫
dτ12 eiωτ12

∫
dω′

2π
e−iω′(+τ12) G(x1x2′ ;ω′)

∫
dω′′

2π
e−iω′′(−τ)12 G(x2x1′ ;ω′′)

=

∫
dω′

2π
G(x1x2′ ;ω′)

∫
dω′′

2π
G(x2x1′ ;ω′′)

∫
dτ12 ei(ω−ω′+ω′′)τ12︸                    ︷︷                    ︸

2π δ(ω−ω′+ω′′)

=

∫
dω′

2π
G(x1x2′ ;ω′) G(x2x1′ ;ω′ − ω).

By using the Lehmann representation of the one-body Green’s function [see Eq. (9)], we get

2πL̃(x1, x2; x1′ , x2′ ;ω) =

∫
dω′

∑
i

ϕi(x1)ϕ∗i (x2′ )
ω′ − (εi + iη)

+
∑

a

ϕa(x1)ϕ∗a(x2′ )
ω′ − (εa − iη)


∑

j

ϕ j(x2)ϕ∗j(x1′ )

ω′ − ω − (ε j + iη)
+

∑
b

ϕb(x2)ϕ∗b(x1′ )
ω′ − ω − (εb − iη)


=

∫
dω′

∑
i j

ϕi(x1)ϕ∗i (x2′ )ϕ j(x2)ϕ∗j(x1′ )

(ω′ − (εi + iη))(ω′ − (ω + ε j + iη))
+

∫
dω′

∑
ib

ϕi(x1)ϕ∗i (x2′ )ϕb(x2)ϕ∗b(x1′ )
(ω′ − (εi + iη))(ω′ − (ω + εb − iη))

+

∫
dω′

∑
a j

ϕa(x1)ϕ∗a(x2′ )ϕ j(x2)ϕ∗j(x1′ )

(ω′ − (εa − iη))(ω′ − (ω + ε j + iη))
+

∫
dω′

∑
ab

ϕa(x1)ϕ∗a(x2′ )ϕb(x2)ϕ∗b(x1′ )
(ω′ − (εa − iη))(ω′ − (ω + εb − iη))

=

∫
C+

dω′
∑

ib

ϕi(x1)ϕ∗i (x2′ )ϕb(x2)ϕ∗b(x1′ )
(ω′ − (εi + iη))(ω′ − (ω + εb − iη))

−

∫
C−

dω′
∑
a j

ϕa(x1)ϕ∗a(x2′ )ϕ j(x2)ϕ∗j(x1′ )

(ω′ − (εa − iη))(ω′ − (ω + ε j + iη))
.

In the preceding expression, the integration over the i j (ab) terms vanishes as all the poles reside in the upper (lower) part of the
complex plane. C+ and C− correspond to the contours drawn in Fig. 1, each extending to an infinite radius. The integration over

Re(ω)

Im(ω)

C+

C−

FIG. 1: Integration contours in the complex plane.

these contours leads to

L̃(x1x2; x1′x2′ ;ω) = i
∑

ia

[
ϕa(x1)ϕ∗a(x2′ )ϕi(x2)ϕ∗i (x1′ )

ω − (εa − εi − 2iη)
−
ϕi(x1)ϕ∗i (x2′ )ϕa(x2)ϕ∗a(x1′ )

ω − (εi − εa + 2iη)

]
. (43)
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The stage is now set to compute the matrix elements of the irreducible polarizability defined as

L̃pqrs(ω) =

∫
dx1dx2dx1′dx2′ L̃(x1x2; x1′x2′ )ϕ∗p(x1)ϕ∗q(x2)ϕr(x1′ )ϕs(x2′ )

= i
∑

ia

δpaδqiδriδsa

ω − (εa − εi − 2iη)
− i

∑
ia

δpiδqaδraδsi

ω − (εi − εa + 2iη)
.

Therefore, the associated matrix L̃(ω) can be written as a diagonal matrix by choosing the right pair of indices

L̃rp,qs(ω) = i
∑

ia

δpsa δqri

ω − (εa − εi − 2iη)
− i

∑
ia

δpsi δqra

ω − (εi − εa + 2iη)
, (44)

where δpqr = δpqδqr. In matrix representation, this expression is equivalent to representing the matrix L̃(ω) in the space of single
excitations (and deexcitations) as

L̃(ω) =

[
i
(
∆ε 0
0 ∆ε

)
− iω

(
1 0
0 −1

)]−1

,

where 1 is the identity matrix and ∆εia, jb = (εa − εi) δi j δab.
The Fourier transform of the inverse of the reducible polarizability is straightforward

L−1(x1x2; x1′x2′ ;ω) = L̃−1(x1x2; x1′x2′ ;ω) + iv(x1x2; x1′x2′ ).

Then, the matrix elements of the inverse of the reducible polarizability are obtained as

i L−1
rp,qs(ω) = i L̃−1

rp,qs(ω) − vrp,qs. (45)

The matrix elements of the four-point Coulomb operator are

vrp,qs =

∫
dx1dx2dx1′dx2′ v(x1x2; x1′x2′ )ϕ∗p(x1)ϕ∗q(x2)ϕr(x1′ )ϕs(x2′ )

= 〈pq|rs〉
(46)

where

〈pq|rs〉 =

"
ϕ∗p(x1)ϕ∗q(x2)ϕr(x1)ϕs(x2)

|r1 − r2|
dx1dx2 (47)

are the bare two-electron integrals in the spin-orbital basis. In matrix notation, we obtain

i L−1(ω) = i L̃−1(ω) − v = i
[
i
(
∆ε 0
0 ∆ε

)
− iω

(
1 0
0 −1

)]
− v = −M · [H − ω 1],

where the (unitary) metric matrixM and the non-Hermitian matrixH are given by

M =M−1 =

(
1 0
0 −1

)
, H =

(
A B
−B∗ −A∗

)
, (48)

such that

Aia, jb = (εa − εi) δi j δab + 〈a j|ib〉 , Bia, jb = 〈ab|i j〉 . (49)

The properties of the Coulomb interaction imply that B is symmetric and A is Hermitian

Bia, jb = B jb,ia ⇔ Bᵀ = B, Aia, jb = A∗jb,ia ⇔ A† = A. (50)

Therefore, one can find the expression of L(ω) by using the eigendecomposition of H . Let L and R be the left- and right-
eigenvectors ofH

H ·R = R · E, H
†
·L = L · E, (51)
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with the bi-orthonormality condition L† ·R = 1. These eigenvectors allow to decompose the matrixH asH = R · E ·L†. Thus,

i L−1(ω) = −M · [H − ω1] = −M ·
[
R · E ·L

†
− ωR ·L†

]
= −M ·R · [E − ω1] ·L†,

and we obtain its inverse as

i L(ω) = R · [E − ω1]−1
·L
†
·M.

The matrixH exhibits the well-known structure typically encountered in linear response equations, known as Casida equations.
The computation of eigenvectors is reduced to determine two distinct blocks, denoted as X and Y:

R =

(
X Y∗
Y X∗

)
, L =

(
X −Y∗
−Y X∗

)
, (52)

where the normalization constraint is simplified to the two conditions:

X† · X − Y† · Y = 1, Xᵀ · Y − Yᵀ · X = 0. (53)

On the other hand, the eigenvalues of H are solely determined by a single diagonal block, denoted as Ω and assumed to be
real-valued

E =

(
Ω 0
0 −Ω

)
. (54)

Hence, the matrix L(ω) is entirely determined by the three blocks Ω, X, and Y

i L(ω) =

(
X Y∗
Y X∗

)
·

(
[Ω − ω1]−1 0

0 − [Ω + ω1]−1

)
·

(
X† −Y†
−Yᵀ Xᵀ

)
·

(
1 0
0 −1

)
=

(
X · [Ω − ω1]−1 · X† + Y∗ · [Ω + ω1]−1 · Yᵀ X · [Ω − ω1]−1 · Y† + Y∗ · [Ω + ω1]−1 · Xᵀ

Y · [Ω − ω1]−1 · X† + X∗ · [Ω + ω1]−1 · Yᵀ Y · [Ω − ω1]−1 · Y† + X∗ · [Ω + ω1]−1 · Xᵀ

)
,

= i
(

LI(ω) LII(ω)
LIII(ω) LIV (ω)

)
,

where the four blocks are defined as

i LI
ia, jb(ω) =

∑
m

− Xia,m X∗jb,m
ω −Ωm + iη

+
Y∗ia,m Y jb,m

ω + Ωm − iη

 , i LII
ia, jb(ω) =

∑
m

− Xia,m Y∗jb,m
ω −Ωm + iη

+
Y∗ia,m X jb,m

ω + Ωm − iη

 , (55)

i LIII
ia, jb(ω) =

∑
m

− Yia,m X∗jb,m
ω −Ωm + iη

+
X∗ia,m Y jb,m

ω + Ωm − iη

 , i LIV
ia, jb(ω) =

∑
m

− Yia,m Y∗jb,m
ω −Ωm + iη

+
X∗ia,m X jb,m

ω + Ωm − iη

 . (56)

It is straightforward to show that these blocks may be obtained if we define the operator L(x1x2; x1′x2′ ;ω) as

i L(x1x2; x1′x2′ ;ω) =
∑

m

[
−
ρm(x1′x1) ρ∗m(x2x2′ )

ω −Ωm + iη
+
ρm(x2′x2) ρ∗m(x1x1′ )

ω + Ωm − iη

]
, (57)

where

ρm(x1′x1) =
∑

ia

[
Xia,m ϕ

∗
i (x1′ )ϕa(x1) + Yia,m ϕ

∗
a(x1′ )ϕi(x1)

]
. (58)

Before concluding this section, we emphasize the possibility of bypassing the diagonalization of the non-Hermitian matrixH
and instead determine X and Y via a Hermitian eigenproblem of half its original dimension, especially in the case of real-valued
spin-orbitals. In fact, we have(

A B
−B −A

)
·

(
X Y
Y X

)
=

(
X Y
Y X

)
·

(
Ω 0
0 −Ω

)
⇔

(A + B) · (X + Y) = (X − Y) ·Ω,
(A − B) · (X − Y) = (X + Y) ·Ω,

⇔

(A + B) · (A − B) · (X − Y) = (X − Y) ·Ω2,

X + Y = (A − B) · (X − Y) ·Ω−1.

(59)
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Supposing A − B positive definite, we can then insert (A − B)−1/2 · (A − B)+1/2 = 1 into the eigenproblem of X − Y and then
multiply it on the left by (A − B)+1/2 to obtain the Hermitian eigenproblem

(A − B)1/2 · (A + B) · (A − B)1/2 · Z̃ = Z̃ ·Ω2, (60)

where Z̃ = (A − B)+1/2 · (X − Y). To account for the normalization condition, we introduce the eigenvectors Z = Z̃ ·Ω−1/2, which
satisfy the same eigenproblem:

(A − B)1/2 · (A + B) · (A − B)1/2 · Z = Z ·Ω2. (61)

Hence, the matrices X and Y with the appropriate normalization are completely determined by these eigenvectorsX − Y = (A − B)−1/2 · Z ·Ω+1/2,

X + Y = (A − B)+1/2 · Z ·Ω−1/2,
⇔

X = 1
2

[
(A − B)+1/2 · Z ·Ω−1/2 + (A − B)−1/2 · Z ·Ω+1/2

]
,

Y = 1
2

[
(A − B)+1/2 · Z ·Ω−1/2 − (A − B)−1/2 · Z ·Ω+1/2

]
.

(62)

B. Screened interaction

Before computing the matrix elements of the various terms of the GW self-energy, we derive the matrix elements of the screened
Coulomb interaction W. The expression of W(12; 1′2′) is given by Eq. (30) and it can be written in terms of τ = t1 − t2 as

W(x1x2; x1′x2′ ; τ) = v(x1x2; x1′x2′ ) − i
∫

d
(
343′4′

)
v(13; 1′3′) L(4′3′; 4+3+) v(24; 2′4′)

= v(x1x2; x1′x2′ ) − i
∫

d(x3x4x3′x4′ ) v(x1x3; x1′x3′ ) v(x2x4; x2′x4′ ) L(x4′x3′ ; x4x3;−τ).
(63)

Its Fourier transform is easy to compute and one gets

W(x1x2; x1′x2′ ;ω) =

∫
dτeiωτ W(x1x2; x1′x2′ ; τ)

= v(x1x2; x1′x2′ ) − i
∫

d(x3x4x3′x4′ ) v(x1x3; x1′x3′ ) v(x2x4; x2′x4′ ) L(x4′x3′ ; x4x3;−ω)

= v(x1x2; x1′x2′ ) +
∑

m

[
Mm(x1x1′ ) M∗m(x2x2′ )

ω −Ωm + iη
−

M∗m(x1x1′ ) Mm(x2x2′ )
ω + Ωm − iη

]
,

(64)

where we have introduced the transition densities

Mm(x1x1′ ) =

∫
dx2dx2′ v(x1x2; x1′x2′ ) ρm(x2x2′ )

=

∫
dx2dx2′ v(x1x2; x1′x2′ ) ρm(x2′x2)

= Mm(x1′x1).

(65)

After projection in the spin-orbital basis, the matrix elements of W become

Wrp,qs(ω) =

∫
dx1dx1′dx2dx2′ W(x1x2; x1′x2′ ;ω)ϕ∗p(x1)ϕ∗q(x2)ϕr(x1′ )ϕs(x2′ )

= 〈pq|rs〉 +
∑

m

[ Mpr,m M∗sq,m

ω −Ωm + iη
−

M∗rp,m Mqs,m

ω + Ωm − iη

]
,

(66)

where we have introduced the elements of the transition densities

Mpq,m =

∫
dx1dx1′ Mm(x1x1′ )ϕ∗p(x1)ϕq(x1′ ). (67)

Using the expression of ρ given in Eq. (58), the previous integral can be written as

Mpq,m =
∑

ia

[
Xia,m 〈ap|iq〉 + Yia,m 〈ip|aq〉

]
. (68)
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C. GW self-energy

We now shift our focus to the calculation of the self-energy:

Σxc(11′) = i
∫

d
(
22′

)
G(22′) W(12′; 21′), (69)

where

W(12′; 21′) = v(12′−; 21′) − i
∫

d
(
343′4′

)
v(13; 23′) L(4′3′; 4+3+) v(2′4; 1′4′). (70)

By employing the expression for W, we can decompose this expression into separate exchange and correlation components,
such that Σxc(11′) = Σx(11′) + Σc(11′), where the exchange part is

Σx(x1x1′ ; τ11′ = t1 − t′1) = i
∫

d
(
22′

)
G(22′) v(12′−; 21′)

= i δ(τ11′ )
∫

d(x2x2′ ) v(x1x2′ ; x2x1′ )
∫

d(t2t2′ ) δ(t2′ − η − t1′ ) δ(t1 − t2) G(x2x2′ ; t2 − t2′ )

= i δ(τ11′ )
∫

d(x2x2′ ) v(x1x2′ ; x2x1′ ) G(x2x2′ ; τ11′ − η),

(71)

and the correlation part is

Σc(x1x1′ ; τ11′ ) =

∫
d
(
2342′3′4′

)
G(22′) v(13; 23′) L(4′3′; 4+3+) v(2′4; 1′4′)

=

∫
d(x2x3x4x2′x3′x4′ ) v(x1x3; x2x3′ ) v(x2′x4; x1′x4′ )

×

∫
d(t2t3t4t2′ t3′ t4′ ) δ(t1 − t2) δ(t1 − t3′ ) δ(t3 − t3′ ) δ(t2′ − t1′ ) δ(t4 − t4′ ) δ(t2′ − t4′ )

×G(x2x2′ ; t2 − t2′ ) L(4′3′; 4+3+)

=

∫
d(x2x3x4x2′x3′x4′ ) v(x1x3; x2x3′ ) v(x2′x4; x1′x4′ ) G(x2x2′ ; τ11′ ) L(x4′x3′ ; x4x3;−τ11′ ).

(72)

The exchange self-energy does not depend on τ. Hence, its Fourier transform is trivial and one gets

Σx(x1x1′ ;ω) =

∫
dτ11′ eiωτ11′ Σx(x1x1′ ; τ11′ )

= i
∫

d(x2x2′ ) v(x1x2′ ; x2x1′ )
∫

dτ11′ eiωτ11′ δ(τ11′ ) G(x2x2′ ; τ11′ − η)

= i
∫

d(x2x2′ ) v(x1x2′ ; x2x1′ )
∫

dτ11′ eiωτ11′ δ(τ11′ )
1

2π

∫
dω′e−iω′(τ11′−η)G(x2x2′ ;ω′)

= i
∫

d(x2x2′ ) v(x1x2′ ; x2x1′ )
1

2π

∫
dω′eiω′ηG(x2x2′ ;ω′)

= i
∫

d(x2x2′ ) v(x1x2′ ; x2x1′ )
1

2π

∫
dω′eiω′η

∑
i

ϕi(x2)ϕ∗i (x2′ )
ω′ − (εi + iη)

+
∑

a

ϕa(x2)ϕ∗a(x2′ )
ω′ − (εa − iη)


= −

∫
d(x2x2′ ) v(x1x2′ ; x2x1′ )ϕi(x2)ϕ∗i (x2′ ).

(73)

The Fourier transform of the correlation self-energy reads

Σc(x1x1′ ;ω) =

∫
dτ11′ eiωτ11′ Σc(x1x1′ ; τ11′ )

=

∫
dτ11′ eiωτ11′

∫
d(x2x3x4x2′x3′x4′ ) v(x1x3; x2x3′ ) v(x2′x4; x1′x4′ ) G(x2x2′ ; τ11′ ) L(x4′x3′ ; x4x3;−τ11′ )

=

∫
d(x2x3x4x2′x3′x4′ ) v(x1x3; x2x3′ ) v(x2′x4; x1′x4′ )

∫
dω′′

2π
G(x2x2′ ;ω′′)

∫
dω′

2π
L(x4′x3′ ; x4x3;ω′)

∫
dτ11′ ei(ω−ω′′+ω′)τ11′︸                     ︷︷                     ︸

2πδ(ω−ω′′+ω′)

=

∫
d(x2x3x4x2′x3′x4′ ) v(x1x3; x2x3′ ) v(x2′x4; x1′x4′ )

∫
dω′

2π
L(x4′x3′ ; x4x3;ω′) G(x2x2′ ;ω + ω′).

(74)

S12



The integral over ω′ gives∫
dω′

2π
L(x4′x3′ ; x4x3;ω′) G(x2x2′ ;ω + ω′)

= (−i)
∫

dω′

2π

∑
m

[
−
ρm(x4x4′ ) ρ∗m(x3′x3)
ω′ −Ωm + iη

+
ρm(x3x3′ ) ρ∗m(x4′x4)
ω′ + Ωm − iη

] ∑
i

ϕi(x2)ϕ∗i (x2′ )
ω + ω′ − εi − iη

+
∑

a

ϕa(x2)ϕ∗a(x2′ )
ω + ω′ − εa + iη


=

∑
m,i

ρm(x4x4′ ) ρ∗m(x3′x3)ϕi(x2)ϕ∗i (x2′ )
ω + Ωm − εi − 2iη

+
∑
m,a

ρm(x3x3′ ) ρ∗m(x4′x4)ϕa(x2)ϕ∗a(x2′ )
ω −Ωm − εa + 2iη

.

(75)

Hence, the correlation part of the self-energy becomes

Σc(x1x1′ ;ω) =

∫
dx2dx2′

∑
m,i

M∗m(x1x2) Mm(x2′x1′ )ϕi(x2)ϕ∗i (x2′ )
ω + Ωm − εi − 2iη

+
∑
m,a

Mm(x1x2) M∗m(x2′x1′ )ϕa(x2)ϕ∗a(x2′ )
ω −Ωm − εa + 2iη

 . (76)

The matrix elements of the self-energy are obtained as

[Σx(ω)]pq =

∫
dx1dx1′ Σx(x1x1′ ;ω)ϕ∗p(x1)ϕq(x1′ ) = −

∑
i

〈pi|iq〉 , (77)

and

[Σc(ω)]pq =

∫
dx1dx1′ Σc(x1x1′ ;ω)ϕ∗p(x1)ϕq(x1′ ) =

∑
m,i

M∗pi,m Mqi,m

ω + Ωm − εi − iη
+

∑
m,a

Mpa,m M∗qa,m

ω −Ωm − εa + iη
. (78)

D. GW correlation energies

Let us first recall the equation of motion

i
∂

∂t1
G(11′) − h(x1)G(11′) −

∫
d3Σ(13)G(31′) = δ(11′). (79)

where a local one-body potential h is considered here because the kinetic and nuclear repulsion potentials are both local. As
derived in Fetter’s and Walecka’s book,5 the Galitskii-Migdal (GM) functional is

EGM = −
i
2

∫
dx1 lim

2→1+

[
i
∂

∂t1
+ h(x1)

]
G(12)

= −
i
2

∫
dx1 lim

2→1+
i
∂G(12)
∂t1

−
i
2

∫
dx1 lim

2→1+
h(x1)G(12)

= −
i
2

∫
dx1 lim

2→1+

[
δ(12) + h(x1)G(12) +

∫
d3Σ(13)G(32)

]
−

i
2

∫
dx1 lim

2→1+
h(x1)G(12)

= −
i
2

∫
dx1 lim

2→1+
δ(12)︸      ︷︷      ︸

=0

−i
∫

dx1 lim
2→1+

[
h(x1)G(12) +

1
2

∫
d3Σ(13)G(32)

]

= −i
∫

dx1 lim
2→1+

[
h(x1)G(12) +

1
2

∫
d3Σ(13)G(32)

]
which can be further separated as

EGM = −i
∫

dx1 lim
2→1+

[
h(x1)G(12) +

1
2

∫
d3ΣHx(13)G(32)

]
−

i
2

∫
dx1 lim

2→1+

∫
d3Σc(13)G(32)

= EGM
Hx + EGM

c
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The first term is equal to the HF energy, i.e. EGM
Hx = EHF, if evaluated with the HF Green’s function. Let us now focus on the

correlation energy which reads

EGM
c = −

i
2

∫
dx1 lim

2→1+

∫
d3 Σc(13)G(32)

= −
i
2

∫
dx1 lim

2→1+

∫
d3 Σc(13)

∫
dω
2π

e−iω(t3−t2)G(x3x2;ω)

= −
i
2

∫
dx1 lim

2→1+

∫
dω
2π

eiω(t2−t1)
∫

d3 eiω(t1−t3)Σc(13)G(x3x2;ω)

= −
i
2

∫
dx1

∫
dω
2π

lim
2→1+

eiω(t2−t1)
∫

dx3 Σc(x1x3;ω)G(x3x2;ω)

= −
i
2

∫
dx1

∫
dω
2π

eiωη
∫

dx3 Σc(x1x3;ω)G(x3x1;ω)

The last step consists of transforming the previous equation into an implementable version involving matrix elements. This yields

EGM
c = −

i
2

∫
dω
2π

eiωη
∫

dx1

∫
dx3

∑
pq

ϕ∗p(x1)ϕq(x3) [Σc(ω)]pq


∑

rs

ϕ∗r (x3)ϕs(x1)Grs(ω)


= −

i
2

∫
dω
2π

eiωη
∑
pq

[Σc(ω)]pq Gqp(ω)

= −
i
2

∫
dω
2π

eiωη
∑
pq

∑
mi

M∗pi,mMqi,m

ω − (εi −Ωm + iη)
+

∑
ma

Mpa,mM∗qa,m

ω − (εa + Ωm − iη)


∑

j

δpq j

ω − (ε j + iη)
+

∑
b

δpqb

ω − (εb − iη)


=

1
2

∑
pq

∑
mib

M∗pi,mMqi,mδpqb

(εi −Ωm + iη) − (εb − iη)
+

∑
ma j

Mpa,mM∗qa,mδpq j

(ε j + iη) − (εa + Ωm − iη)


= −

1
2

∑
mia

M∗ai,mMai,m

εa − εi + Ωm − 2iη
−

1
2

∑
mai

Mia,mM∗ia,m
εa − εi + Ωm + 2iη
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