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ABSTRACT: The family of Green’s function methods based on
the GW approximation has gained popularity in the electronic
structure theory thanks to its accuracy in weakly correlated systems
combined with its cost-effectiveness. Despite this, self-consistent
versions still pose challenges in terms of convergence. A recent
study [Monino and Loos J. Chem. Phys. 2022, 156, 231101.] has
linked these convergence issues to the intruder-state problem. In
this work, a perturbative analysis of the similarity renormalization
group (SRG) approach is performed on Green’s function methods.
The SRG formalism enables us to derive, from first-principles, the
expression of a naturally static and Hermitian form of the self-
energy that can be employed in quasiparticle self-consistent GW
(qsGW) calculations. The resulting SRG-based regularized self-energy significantly accelerates the convergence of qsGW
calculations, slightly improves the overall accuracy, and is straightforward to implement in existing code.

I. INTRODUCTION
The one-body Green’s function provides a natural and elegant
way to access the charged excitation energies of a physical
system.1−4 The nonlinear Hedin equations consist of a closed set
of equations leading to the exact interacting one-body Green’s
function and, therefore, to a wealth of properties such as the total
energy, density, ionization potentials, and electron affinities, as
well as spectral functions, without the explicit knowledge of the
wave functions associated with the neutral and charged
electronic states of the system.5 Unfortunately, solving exactly
Hedin’s equations is usually out of reach, and one must resort to
approximations. In particular, the GW approximation,4−9 which
has been first introduced in the context of solids10−19 and is now
widely applied to molecular systems,20−46 yields accurate
charged excitation energies for weakly correlated systems9,47−51

at a relatively low computational cost.52−58

TheGWmethod approximates the self-energyΣwhich relates
the exact interacting Green’s function G to a noninteracting
reference version G0 through a Dyson equation of the form

= +G G d G G(1, 2) (1, 2) (34) (1, 3) (3, 4) (4, 2)0 0

(1)

where 1 = (x1, t1) is a composite coordinate gathering spin-space
and time variables. The self-energy encapsulates all the Hartree-
exchange-correlation effects which are not taken into account in
the reference system. Approximating Σ as the first-order term of
its perturbative expansion with respect to the screened Coulomb
potential W yields the so-called GW approximation3,5

= G W(1, 2) i (1, 2) (1, 2) (2)

Diagrammatically, GW involves a resummation of the (time-
dependent) direct ring diagrams via the computation of the
random-phase approximation (RPA) polarizability59,60 and is
thus particularly well suited for weak correlation.
Despite a wide range of successes, many-body perturbation

theory has well-documented limitations.48,57,61−68 For example,
modeling core−electron spectroscopy requires core ionization
energies which have been proven to be challenging for routine
GW calculations.49,69−71 Many-body perturbation theory can
also be used to access optical excitation energies through the
Bethe-Salpeter equation.35,41,72,73 However, the accuracy is not
yet satisfying for triplet excited states, where instabilities often
occur.27,30,31,42 Therefore, even if GW offers a good trade-off
between accuracy and computational cost, some situations
might require higher precision. Unfortunately, defining a
systematic way to go beyond GW via the inclusion of vertex
corrections has been demonstrated to be a tricky task.47,74−92

For example, Lewis and Berkelbach have shown that naive vertex
corrections can even worsen the quasiparticle energies with
respect to GW.93 We refer the reader to the recent review by
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Golze and co-workers4 for an extensive list of current challenges
in Green’s function methods.
Many-body perturbation theory also suffers from the

infamous intruder-state problem,94−99 where they manifest
themselves as solutions of the quasiparticle equation with non-
negligible spectral weights. In some cases, this transfer of spectral
weight makes it difficult to distinguish between a quasiparticle
and a satellite. These multiple solutions hinder the convergence
of partially self-consistent schemes,55,100,101 such as eigenvalue-
only self-consistent GW102−106 (evGW) and quasiparticle self-
consistent GW105,107−110 (qsGW). The simpler one-shot G0W0
scheme10,14,18,102,111−115 is also impacted by these intruder
states, leading to discontinuities and/or irregularities in a variety
of physical quantities including charged and neutral excitation
energies as well as correlation and total energies.44,100,101,116−119

These convergence problems and discontinuities can even
happen in the weakly correlated regime where the GW
approximation is supposed to be valid.
In a recent study, Monino and Loos showed that the

discontinuities could be removed by the introduction, in the
quasiparticle equation, of a regularizer inspired by the similarity
renormalization group (SRG).101 Encouraged by this study and
the recent successes of regularization schemes in many-body
quantum chemistry methods, such as in single- and multi-
reference perturbation theory,120−125 the present work inves-
tigates the application of the SRG formalism in GW-based
methods. In particular, we focus here on the possibility of curing
the qsGW convergence issues using the SRG.
The SRG formalism has been developed independently by

Wegner126 in the context of condensed matter systems and
Glazek and Wilson127,128 in light-front quantum field theory.
This formalism has been introduced in quantum chemistry by
White129 before being explored in more detail by Evangelista
and co-workers in the context of multireference electron
correlation theories.122,123,130−137 The SRG has also been
successful in the context of nuclear structure theory, where it
was first developed as a mature computational tool thanks to the
work of several research groups.138−145 See ref 142 for a recent
review in this field.
The SRG transformation aims at decoupling an internal (or

reference) space from an external space while incorporating
information about their coupling in the reference space. This
process often results in the appearance of intruder states.122,123

However, the SRG is particularly well-suited to avoid these
because the decoupling of each external configuration is
inversely proportional to its energy difference with the reference
space. By definition, intruder states have energies that are close
to the reference energy and, therefore, are the last to be
decoupled. By stopping the SRG transformation once all
external configurations except the intruder states have been
decoupled, correlation effects between the internal and external
spaces can be incorporated (or folded) without the presence of
intruder states.
The goal of this manuscript is to determine if the SRG

formalism can effectively address the issue of intruder states in
many-body perturbation theory, as it has in other areas of
electronic and nuclear structure theory. This open question will
lead us to an intruder-state-free static approximation of the self-
energy derived from first-principles that can be employed in
partially self-consistent GW calculations. Note that throughout
the manuscript we focus on the GW approximation, but the
subsequent derivations can be straightforwardly applied to other

self-energies such as the one derived from second-order Green’s
function146−162 or the T-matrix approximation.78,80,89,163−174

The manuscript is organized as follows. We begin by
reviewing the GW approximation in Sec. II and then briefly
introduce the SRG formalism in Sec. III. A perturbative analysis
of SRG applied to GW is presented in Sec. IV. The
computational details are provided in Sec. V before turning to
the results (Sec. VI). Our conclusions are drawn in Sec. VII.
Unless otherwise stated, atomic units are used throughout.

II. THE GW APPROXIMATION
The central equation of many-body perturbation theory based
on Hedin’s equations is the so-called dynamical and non-
Hermitian quasiparticle equation which, within the GW
approximation, reads

[ + = ] =F x x( ) ( ) ( )p p p p (3)

where F is the Fock matrix in the orbital basis,148 and Σ(ω) is
(the correlation part of) the GW self-energy. Both are K × K
matrices with K being the number of one-electron orbitals.
Throughout the manuscript, the indices p, q, r, and s are general
orbitals, while i, j, k, and l and a, b, c, and d refer to occupied and
virtual orbitals, respectively. The indices μ and ν are composite
indices, that is, ν = (ia), referring to neutral (single) excitations.
The self-energy can be physically understood as a correction

to the Hartree−Fock (HF) problem (represented by F)
accounting for dynamical screening effects. Similar to the HF
case, eq 3 has to be solved self-consistently, but the dynamical
and non-Hermitian nature of Σ(ω), as well as its functional
form, makes it much more challenging to solve from a practical
point of view.
The matrix elements of Σ(ω) have the following closed-form

expression81,175−178

=
+

+
+

W W W W
( )

i ipq
i

pi qi

i a

pa qa

a (4)

where η is a positive infinitesimal, and the screened two-electron
integrals are

= | +X YW pi qa ( )pq
ia

ia
(5)

with X and Y the components of the eigenvectors of the direct
(i.e., without exchange) RPA problem defined as

=A B
B A

X Y
Y X

X Y
Y X

0
0

i
k
jjj y

{
zzzi

k
jjj y

{
zzz i

k
jjj y

{
zzz

i
k
jjjj

y
{
zzzz (6)

with

= + |A ib aj( )ia jb a i ij ab, (7a)

= |B ij abia jb, (7b)

and where

| =
| |

x x x x

r r
x xpq rs d d

( ) ( ) ( ) ( )p q r s1 2 1 2

1 2
1 2

(8)

is bare two-electron integrals in the spin−orbital basis.
The diagonal matrixΩ contains the positive eigenvalues of the

RPA problem defined in eq 6, and its elementsΩν appear in eq 4.
As mentioned above, because of the frequency dependence of

the self-energy, solving exactly the quasiparticle eq 3 is a rather
complicated task. Hence, several approximate schemes have
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been developed to bypass full self-consistency. The most
popular strategy is the one-shot (perturbative) GW scheme,
G0W0, where the self-consistency is completely abandoned, and
the off-diagonal elements of eq 3 are neglected. Assuming an HF
starting point, this results in K quasiparticle equations that read

+ =( ) 0p pp
HF

(9)

where Σpp(ω) is the diagonal elements of Σ, and ϵp
HF is the HF

orbital energies. The previous equations are nonlinear with
respect toω and therefore have multiple solutions ϵp,z for a given
p (where the index z is numbering solutions). These solutions
can be characterized by their spectral weight given by the
renormalization factor

=
=

Z0 1
( )

1p z
pp

,

1

p z,

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ (10)

The solution with the largest weight Zp ≡ Zp,z=0 is referred to as
the quasiparticle, while the others are known as satellites (or
shakeup transitions). However, in some cases, eq 9 can have two
(or more) solutions with similar weights; hence, the
quasiparticle is not well-defined.
One obvious drawback of the one-shot scheme mentioned

above is its starting-point dependence. Indeed, in eq 9, we
choose to rely on HF orbital energies, but this is arbitrary and
one could have chosen Kohn−Sham energies (and orbitals)
instead. As commonly done, one can even “tune” the starting
point to obtain the best possible one-shot GW quasiparticle
energies.50,104,179−182

Alternatively, one may solve iteratively the set of quasiparticle
equations (eq 9) to reach convergence of the quasiparticle
energies, leading to the partially self-consistent scheme named
evGW. However, if one of the quasiparticle equations does not
have a well-defined quasiparticle solution, reaching self-
consistency can be challenging, if not impossible. Even at
convergence, the starting point dependence is not totally
removed as the quasiparticle energies still depend on the initial
set of orbitals.104

In order to update both the orbitals and their corresponding
energies, one must consider the off-diagonal elements in Σ(ω).
To avoid solving the non-Hermitian and dynamic quasiparticle
equation defined in eq 3, one can resort to the qsGW scheme in
which Σ(ω) is replaced by a static approximation ΣqsGW. Then,
the qsGW equations are solved via a standard self-consistent
field procedure similar to the HF algorithm where F is replaced
by F + ΣqsGW. Various choices for ΣqsGW are possible, but the
most popular is the following Hermitian approximation

= [ + ]1
2

Re ( ) ( )pq pq p pq q
qsGW

(11)

which was first introduced by Faleev and co-workers107−109,183

before being derived by Ismail-Beigi as the effective Hamiltonian
that minimizes the length of the gradient of the Klein functional
for noninteracting Green’s functions.184 The corresponding
matrix elements are

=
+

+
+

W W1
2 ( ) ( )pq

r

pr

pr

qr

qr
pr qr

qsGW
2 2 2 2

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
(12)

withΔpr
ν = ϵp − ϵr − sgn(ϵr − ϵF)Ων (where ϵF is the energy of the

Fermi level). One of themain results of the presentmanuscript is

the derivation, from first-principles, of an alternative static
Hermitian form for the qsGW self-energy.
Once again, in cases where multiple solutions have large

spectral weights, self-consistency can be difficult to reach at the
qsGW level. Multiple solutions of eq 9 arise due to the ω
dependence of the self-energy. Therefore, by suppressing this
dependence, the static approximation relies on the fact that there
are well-defined quasiparticle solutions. If it is not the case, the
self-consistent qsGW scheme inevitably oscillates between
solutions with large spectral weights.55

The satellites causing convergence issues are the above-
mentioned intruder states.101 One can deal with them by
introducing ad hoc regularizers. For example, the iη term in the
denominators of eq 4, sometimes referred to as a broadening
parameter linked to the width of the quasiparticle peak, is similar
to the usual imaginary-shift regularizer employed in various
other theories plagued by the intruder-state prob-
lem.97,101,124,185

However, this η parameter is required to define the Fourier
transformation between time and energy representation and
should theoretically be set to zero.3 Several other regularizers are
possible,120−122,125,186,187 and in particular, it was shown in ref
101 that a regularizer inspired by the SRG had some advantages
over the imaginary shift. Nonetheless, it would bemore rigorous,
and more instructive, to obtain this regularizer from first-
principles by applying the SRG formalism to many-body
perturbation theory. This is one of the aims of the present work.

III. THE SIMILARITY RENORMALIZATION GROUP
The SRG method aims at continuously transforming a general
Hamiltonian matrix to its diagonal form or, more often, to a
block-diagonal form. Hence, the first step is to decompose this
Hamiltonian matrix

= +H H Hd od (13)

into an off-diagonal part, Hod, that we aim at removing and the
remaining diagonal part, Hd.
This transformation can be performed continuously via a

unitary matrix U(s), as follows

= †H U HUs s s( ) ( ) ( ) (14)

where the flow parameter s controls the extent of the decoupling
and is related to an energy cutoffΛ = s−1/2. For a given value of s,
only states with energy difference (with respect to the reference
space) greater than Λ are decoupled from the reference space,
hence avoiding potential intruders. By definition, the boundary
conditions areH(s = 0) =H [orU(s = 0) = 1] andHod(s =∞) =
0.
An evolution equation for H(s) can be easily obtained by

differentiating eq 14 with respect to s, yielding the flow equation

= [ ]H
H

s
s

s s
d ( )

d
( ), ( )

(15)

where η(s), the flow generator, is defined as

= =† †U
Us

s
s

s s( )
d ( )

d
( ) ( )

(16)

The flow equation can then be approximately solved by
introducing an approximate form of η(s).
In this work, we consider Wegner’s canonical generator126

= [ ] = [ ]H H H Hs s s s s( ) ( ), ( ) ( ) ( )W d d od (17)
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which satisfies the following condition188

[ ]†H H
s

s s
d
d

Tr ( ) ( ) 0od od
(18)

This implies that the matrix elements of the off-diagonal part
decrease in a monotonic way throughout the transformation.
Moreover, the coupling coefficients associated with the highest-
energy determinants are removed first as we shall evidence in the
perturbative analysis below. The main drawback of this
generator is that it generates a stiff set of ODE which is
therefore difficult to solve numerically. However, here we will
not tackle the full SRG problem but only consider analytical low-
order perturbative expressions. Hence, we will not be affected by
this problem.142,189

Let us now perform the perturbative analysis of the SRG
equations. For s = 0, the initial problem is

= +H H H(0) (0) (0)d od (19)

where λ is the usual perturbation parameter, and the off-diagonal
part of the Hamiltonian has been defined as the perturbation.
For finite values of s, we have the following perturbation
expansion of the Hamiltonian

= + + +H H H Hs s s s( ) ( ) ( ) ( ) ...(0) (1) 2 (2) (20)

The generator η(s) admits a similar perturbation expansion.
Then, as performed in Sec. IV, one can collect order by order the
terms in eq 15 and solve analytically the low-order differential
equations.

IV. REGULARIZED GW APPROXIMATION
Here, we combine the concepts of the two previous subsections
and apply the SRG method to the GW formalism. However, to
do so, one must identify the coupling terms in eq 3, which is not
straightforward. A way around this problem is to transform eq 3
to an equivalent upfolded form which elegantly highlights the
coupling terms. Indeed, the GW quasiparticle equation is
equivalent to the diagonalization of the following matrix190,191

†

†

F W W

W C

W C

0

0

( )

( )

2h1p 2p1h

2h1p 2h1p

2p1h 2p1h

i

k

jjjjjjjjjjjjj

y

{

zzzzzzzzzzzzz
(21)

where the 2h1p and 2p1h matrix elements are

=C ( )i j i ij,
2h1p

(22a)

= +C ( )a b a ab,
2p1h

(22b)

and the corresponding coupling blocks read [see eq 5]

= =W W W W,p i pi p a pa,
2h1p

,
2p1h

(23)

The usual GW nonlinear equation can be obtained by
applying the Löwdin partitioning technique192 to eq 21
yielding190

=
+

†

†

W C W

W C W

1

1

( ) ( ) ( )

( ) ( )

2h1p 2h1p 1 2h1p

2p1h 2p1h 1 2p1h (24)

which can be further developed to recover exactly eq 4.
Equations 21 and 3 yield exactly the same quasiparticle and

satellite energies, but one is linear and the other is not. The price
to pay for this linearity is that the size of the matrix in the former

is K( )3 , while it is only K( ) in the latter. We refer to ref 190
for a detailed discussion of the up/downfolding processes of the
GW equations (see also refs 191 and 119).
As can be readily seen in eq 21, the blocksW2h1p andW2p1h are

coupling the 1h and 1p configurations to the 2h1p and 2p1h
configurations. Therefore, it is natural to define, within the SRG
formalism, the diagonal and off-diagonal parts of the GW
effective Hamiltonian as

=H

F

C

C

s

0 0

0 0

0 0

( )d 2h1p

2p1h

i

k

jjjjjjjjjjj

y

{

zzzzzzzzzzz (25a)

= †

†

H

W W

W

W

s

0

0 0

0 0

( ) ( )

( )

od

2h1p 2p1h

2h1p

2p1h

i

k

jjjjjjjjjjjjj

y

{

zzzzzzzzzzzzz
(25b)

where we omit the s dependence of the matrices for the sake of
brevity. Then, our aim is to solve, order by order, the flow
equation (eq 15) knowing that the initial conditions are

= =H
F

C
H

0
0

0(0) , (0)d
(0)

od
(0)i

k
jjj y

{
zzz

(26a)

= = †H H
W

W
0

0

0
(0) , (0)d

(1)
od
(1) i

k
jjjjj

y
{
zzzzz (26b)

where the supermatrices

=C
C

C

0

0

2h1p

2p1h

i
k
jjjjjj

y
{
zzzzzz (27a)

=W W W( )2h1p 2p1h (27b)

collect the 2h1p and 2p1h channels. Once the closed-form
expressions of the low-order perturbative expansions are known,
they can be inserted in eq 24 to define a renormalized version of
the quasiparticle equation. In particular, we focus here on the
second-order renormalized quasiparticle equation.
IV.A. Zeroth-Order Matrix Elements. The choice of

Wegner’s generator in the flow equation [see eq 15] implies that
the off-diagonal correction is of order ( )while the correction
to the diagonal block is at least ( )2 .142 Therefore, the zeroth-
order Hamiltonian is independent of s, and we have

=H Hs( ) (0)(0) (0) (28)

IV.B. First-Order Matrix Elements. Knowing that Hod
(0)(s)

= 0, the first-order flow equation is

= [[ ] ]H
H H H

s
d

d
, ,

(1)

d
(0)

od
(1)

d
(0)

(29)

which gives the following system of equations

= =F C
s s

0 0
d

d
,

d
d

(0) (0)

(30)

and

=W
F W C F W W C

s
d

d
2 ( ) ( )

(1)
(0) (1) (0) (0) 2 (1) (1) (0) 2

(31)
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Equation 30 implies

= =F Fs 0( ) (0)(1) (1) (32a)

= =C Cs 0( ) (0)(1) (1) (32b)

and thanks to the diagonal structure of F0 (which is a
consequence of the HF starting point) and C0, the differential
equation for the coupling block in eq 31 is easily solved and
yields

=W s W e( )pq pq
s(1) ( )pq

2

(33)

At s = 0,Wpq
ν(1)(s) reduces to the screened two-electron integrals

defined in eq 5, while

=W slim ( ) 0
s

pq
(1)

(34)

Therefore, Wpq
ν(1)(s) is a genuine renormalized two-electron

screened integral. It is worth noting the close similarity of the
first-order elements with the ones derived by Evangelista in ref
122 in the context of single- and multireference perturbation
theory (see also ref 142).
IV.C. Second-Order Matrix Elements. The second-order

renormalized quasiparticle equation is given by

[ + = ] =F x xs s( ) ( ; ) ( ) ( )p p p p (35)

with a renormalized Fock matrix of the form

= +F F Fs s( ) ( )(0) (2) (36)

and a renormalized dynamical self-energy

= †V C Vs s s1( ; ) ( )( ) ( ( ))(1) (0) 1 (1) (37)

with elements

=
+

+

[ + ]

[ + ]

s
W W

e

W W
e

( ; )pq
i

pi qi

i

s

a

pa qa

a

s

( ) ( )

( ) ( )

pi qi

pa qa

2 2

2 2

(38)

As can be readily seen above, F(2) is the only second-order
block of the effective Hamiltonian contributing to the second-
order SRG quasiparticle equation. Collecting every second-
order term in the flow equation and performing the block matrix
products results in the following differential equation

= +† † †F F W W W W F W C W
s

d
d

2
(2)

(0) (1) (1), (1) (1), (0) (1) (0) (1),
(39)

which can be solved by simple integration along with the initial
condition F(2)(0) = 0 to yield

=
+
+

[ ][ + ]F s W W e( )
( ) ( )

1pq
r

pr qr

pr qr
pr qr

s(2)
2 2

( ) ( )pr qr
2 2

(40)

At s = 0, the second-order correction vanishes, hence giving

=F Fslim ( )
s 0

(0)
(41)

For s → ∞, it tends toward the following static limit

= +
+
+

F s W Wlim ( )
( ) ( )s

p pq
r

pr qr

pr qr
pr qr2 2

(42)

while the dynamic part of the self-energy [see eq 37] tends to
zero, i.e.,

=s 0lim ( ; )
s (43)

Therefore, the SRG flow continuously transforms the dynamical
self-energy Σ̃(ω; s) into a static correction F̃(2)(s). As illustrated
in Figure 1 (magenta curve), this transformation is done
gradually starting from the states that have the largest
denominators in eq 42.

For a fixed value of the energy cutoff Λ, if |Δpr
ν | ≫ Λ, then

Wpr
ν e−(Δprd

ν )d

2s ≈ 0, meaning that the state is decoupled from the 1h
and 1p configurations, while for |Δpr

ν | ≪ Λ, we have Wpr
ν (s) ≈

Wpr
ν , that is, the state remains coupled.
IV.D. Alternative Form of the Static Self-Energy.

Because the large-s limit of eq 35 is purely static and Hermitian,
the new alternative form of the self-energy reported in eq 42 can
be naturally used in qsGW calculations to replace eq 11.
Unfortunately, as we shall discuss further in Sec. VI, as s → ∞,
self-consistency is once again quite difficult to achieve, if not
impossible. However, one can define a more flexible new static
self-energy, which will be referred to as SRG-qsGW in the
following, by discarding the dynamic part in eq 35 (see cyan
curve in Figure 1). This yields an s-dependent static self-energy
which matrix elements read

=
+
+

[ ][ + ]s W W e( )
( ) ( )

1pq
GW

r

pr qr

pr qr
pr qr

sSRG qs
2 2

( ) ( )pr qr
2 2

(44)

Note that the static SRG-qsGW approximation defined in eq 44
is straightforward to implement in existing code and naturally
Hermitian as opposed to the usual case [see eq 12] where it is
enforced by brute-force symmetrization. Another important
difference is that the SRG regularizer is energy-dependent, while
the imaginary shift is the same for every self-energy
denominator. Yet, these approximations are closely related
because, for η = 0 and s → ∞, they share the same diagonal
terms.
It is well-known that in traditional qsGW calculations,

increasing η to ensure convergence in difficult cases is most
often unavoidable. Similarly, in SRG-qsGW, one might need to
decrease the value of s to ensure convergence. Indeed, the fact
that SRG-qsGW calculations do not always converge in the
large-s limit is expected as, in this limit, potential intruder states
have been included. Therefore, one should use a value of s large
enough to include as many states as possible but small enough to
avoid intruder states.

Figure 1. Schematic evolution of the quasiparticle equation as a
function of the flow parameter s in the case of the dynamic SRG-GW
flow (magenta) and the static SRG-qsGW flow (cyan).
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It is instructive to examine the functional form of both
regularizing functions (see Figure 2). These have been plotted
for a regularizing parameter value of η = 1, where we have set s =
1/(2η2) such that the first-order Taylor expansion around (x, y)
= (0, 0) of both functional forms is equal. One can observe that
the SRG-qsGW surface is much smoother than its qsGW
counterpart. This is due to the fact that the SRG-qsGW
functional at η = 0, f SRG‑qsGW(x, y; 0), has fewer irregularities. In
fact, there is a single singularity at x = y = 0. On the other hand,
the function fqsGW(x, y; 0) is singular on the two entire axes, x = 0
and y = 0. We believe that the smoothness of the SRG-qsGW
surface is the key feature that explains the faster convergence of
SRG-qsGW compared to qsGW. The convergence properties
and the accuracy of both static approximations are quantitatively
gauged in Sec. VI.
To conclude this section, we briefly discuss the case of

discontinuities mentioned in Sec. I. Indeed, it has been
previously mentioned that intruder states are responsible for
both the poor convergence of qsGW and discontinuities in
physical quantities.44,100,101,116−119 Is it then possible to rely on
the SRG machinery to remove discontinuities? Not directly
because discontinuities are due to intruder states in the dynamic
part of the quasiparticle equation. However, as we have seen just
above the functional form of the renormalized equation makes it
possible to choose s such that there are no intruder states in its
static part. Performing a bijective transformation of the form

=e e1s t (45)

on the renormalized quasiparticle eq 35 reverses the situation
and makes it possible to choose t such that there are no intruder
states in the dynamic part, hence removing discontinuities. Note
that, after this transformation, the form of the regularizer is
actually closely related to the SRG-inspired regularizer
introduced by Monino and Loos in ref 101.
The intruder-state-free dynamic part of the self-energy makes

it possible to define SRG-G0W0 and SRG-evGW schemes.
Although the manuscript focuses on SRG-qsGW, the perform-
ance of SRG-G0W0 and SRG-evGW are discussed in the
Supporting Information for the sake of completeness. In a
nutshell, the SRG regularization improves slightly the overall
convergence properties of SRG-evGW without altering its

performance. Likewise, the statistical indicators for G0W0 and
SRG-G0W0 are extremely close.

V. COMPUTATIONAL DETAILS
Our set of systems is composed by closed-shell compounds that
correspond to the 50 smallest atoms and molecules (in terms of
the number of electrons) of the GW100 benchmark set.48 We
will refer to this set as GW50. Following the same philosophy as
the QUEST database for neutral excited states,193,194 their
geometries have been optimized at the CC3/aug-cc-pVTZ
basis level195,196 using the CFOUR program.197 The optimized
geometries are available in the Supporting Information.
The two qsGW variants considered in this work have been

implemented in an in-house program, named QUACK.198 TheGW
implementation closely follows the one of MOLGW.178 In all GW
calculations, we use the aug-cc-pVTZ Cartesian basis set, and
self-consistency is performed on all (occupied and virtual)
orbitals, including core orbitals. We use (restricted) HF guess
orbitals and energies for all self-consistent GW calculations. The
maximum size of the DIIS space199,200 and the maximum
number of iterations were set to 5 and 64, respectively. In
practice, one may achieve convergence, in some cases, by
adjusting these parameters or by using an alternative mixing
scheme. However, in order to perform black-box comparisons,
these parameters have been fixed to these default values. The η
value has been set to 10−3 for the conventional G0W0
calculations (where we eschew linearizing the quasiparticle
equation), while for the qsGW calculations, η has been chosen as
the largest value where one successfully converges the 50
systems composing the test set.
The various GW-based sets of values are compared with a set

of reference values computed at the ΔCCSD(T) level with the
same basis set. The ΔCCSD(T) principal ionization potentials
(IPs) and electron affinities (EAs) have been obtained using
GAUSSIAN 16201 (with default parameters) within the restricted
and unrestricted formalism for the neutral and charged species,
respectively.

VI. RESULTS
VI.A. Flow Parameter Dependence of SRG-qsGW. This

section starts by considering a prototypical molecular system,
the water molecule, in the aug-cc-pVTZ basis set. Figure 3 shows

Figure 2. Functional form of the qsGW self-energy (left) for η = 1 and the SRG-qsGW self-energy (right) for s = 1/(2η2) = 1/2.
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the error in the principal IP [with respect to the ΔCCSD(T)
reference value] as a function of the flow parameter in SRG-
qsGW (green curve). The corresponding HF and qsGW
(computed with η = 0.05) values are also reported for the sake
of comparison. The IP at the HF level (cyan line) is too large;
this is a consequence of the missing correlation and the lack of
orbital relaxation in the cation, a result that is well under-
stood.93,148 The usual qsGW scheme (blue line) brings a
quantitative improvement as the IP is now within 0.3 eV of the
reference value.
At s = 0, the SRG-qsGW IP is equal to its HF counterpart as

expected from the discussion of Sec. IV. As s grows, the IP
reaches a plateau at an error that is significantly smaller than the
HF starting point. Furthermore, the value associated with this
plateau is slightly more accurate than its qsGW counterpart.
However, the SRG-qsGW error does not decrease smoothly
between the initial HF value and the large-s limit. For small s, it is
actually worse than the HF starting point.
This behavior as a function of s can be understood by applying

matrix perturbation theory to eq 21.202 Through second order in
the coupling block, the principal IP is

+
W W

IP
( ) ( )

i

i

i a

a

a
h

h
2

h

h
2

h

(46)

where h is the index of the highest occupied molecular orbital
(HOMO). The first term of the right-hand side of eq 46 is the
zeroth-order IP, and the following two terms originate from the

2h1p and 2p1h coupling, respectively. The denominators of the
2p1h term are positive, while the denominators associated with
the 2h1p term are negative.
As s increases, the first states that decouple from the HOMO

are the 2p1h configurations because their energy difference with
respect to the HOMO is larger than the ones associated with the
2h1p block. Therefore, for small s, only the last term of eq 46 is
partially included, resulting in a positive correction to the IP. As
soon as s is large enough to decouple the 2h1p block, the IP
starts decreasing and eventually goes below the initial value at s =
0, as observed in Figure 3.
Next, the flow parameter dependence of SRG-qsGW is

investigated for the principal IP of two additional molecular
systems as well as the principal EA of F2. The left panel of Figure
4 shows the results for the lithium dimer, Li2, which is an
interesting case because, unlike in water, HF underestimates the
reference IP. Yet, the qsGW and SRG-qsGW IPs are still
overestimating the reference value as in H2O. Indeed, we can see
that the positive increase of the SRG-qsGW IP is proportionally
more important than for water. In addition, the plateau is
reached for larger values of s in comparison to Figure 3.
Now turning to lithium hydride, LiH (see the middle panel of

Figure 4), we see that the qsGW IP is actually worse than the
fairly accurate HF value. However, SRG-qsGW does not suffer
from the same problem and improves slightly the accuracy as
compared to HF.
Finally, we also consider the evolution with respect to s of the

principal EA of F2 that is displayed in the right panel of Figure 4.
The HF value is largely underestimating the ΔCCSD(T)
reference. Performing a qsGW calculation on top of it brings a
quantitative improvement by reducing the error from −2.03 eV
to −0.24 eV. The SRG-qsGW EA (absolute) error is
monotonically decreasing from the HF value at s = 0 to an
error close to the qsGW one at s → ∞.
VI.B. Statistical Analysis. Table I shows the principal IP of

the 50 molecules considered in this work computed at various
levels of theory. As previouslymentioned, theHF approximation
overestimates the IPs with a mean signed error (MSE) of 0.56
eV and a mean absolute error (MAE) of 0.69 eV. Performing a
G0W0 calculation on top of this mean-field starting point,
G0W0@HF, reduces by more than a factor of two the MSE and
MAE, 0.29 and 0.33 eV, respectively. However, there are still
outliers with large errors. For example, the IP of N2 is
overestimated by 1.56 eV, a large discrepancy that is due to
the HF starting point. Self-consistency mitigates the error of the
outliers as the MAE at the qsGW level is now 0.57 eV and the
standard deviation of the error (SDE) is decreased from 0.31 eV
for G0W0@HF to 0.18 eV for qsGW. In addition, the MSE and

Figure 3. Error [with respect to ΔCCSD(T)] in the principal IP of
water in the aug-cc-pVTZ basis set as a function of the flow parameter s
for SRG-qsGW (green curve). The HF (cyan line) and qsGW (blue
line) values are also reported.

Figure 4. Error [with respect toΔCCSD(T)] in the principal IP of Li2, LiH, and the principal EA of F2 in the aug-cc-pVTZ basis set as a function of the
flow parameter s for the SRG-qsGW method (green curves). The HF (cyan lines) and qsGW (blue lines) values are also reported.
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Table I. Principal IP and EA (in eV) of the GW50 Test Set Calculated Using ΔCCSD(T) (Reference), HF, G0W0@HF, qsGW,
and SRG-qsGWa

Principal IP Principal EA

Mol
ΔCCSD(T)

(ref) HF
G0W0@HF
(η = 10−3)

qsGW
(η = 10−1)

SRG-qsGW
(s = 103)

ΔCCSD(T)
(ref) HF

G0W0@HF
(η = 10−3)

qsGW
(η = 10−1)

SRG-qsGW
(s = 103)

He 24.54 24.98 24.59 24.58 24.55 −2.66 −2.70 −2.66 −2.66 −2.66
Ne 21.47 23.15 21.46 21.83 21.59 −5.09 −5.47 −5.25 −5.19 −5.19
H2 16.40 16.16 16.49 16.45 16.45 −1.35 −1.33 −1.28 −1.28 −1.28
Li2 5.25 4.96 5.38 5.40 5.37 0.34 −0.08 0.17 0.18 0.21
LiH 8.02 8.21 8.22 8.25 8.15 −0.29 0.20 0.27 0.27 0.27
HF 16.15 17.69 16.25 16.45 16.34 −0.66 −0.81 −0.71 −0.70 −0.70
Ar 15.60 16.08 15.72 15.61 15.63 −2.55 −2.97 −2.68 −2.64 −2.65
H2O 12.69 13.88 12.90 12.98 12.88 −0.61 −0.80 −0.68 −0.65 −0.66
LiF 11.47 12.91 11.40 11.75 11.58 0.35 0.29 0.33 0.33 0.33
HCl 12.67 12.98 12.78 12.77 12.72 −0.57 −0.79 −0.64 −0.63 −0.63
BeO 9.95 10.45 9.74 10.32 10.18 2.17 1.80 2.28 2.10 2.13
CO 13.99 15.11 14.80 14.34 14.33 −1.57 −1.80 −1.66 −1.61 −1.62
N2 15.54 16.68 17.10 15.93 15.91 −2.37 −2.20 −2.10 −2.10 −2.10
CH4 14.39 14.83 14.76 14.67 14.63 −0.65 −0.79 −0.70 −0.68 −0.68
BH3 13.31 13.59 13.68 13.62 13.59 −0.09 −0.81 −0.46 −0.29 −0.30
NH3 10.91 11.69 11.22 11.18 11.10 −0.61 −0.80 −0.68 −0.66 −0.66
BF 11.15 11.04 11.34 11.19 11.18 −0.80 −1.06 −0.90 −0.87 −0.86
BN 12.05 11.55 11.76 11.89 11.90 3.02 2.97 3.90 3.41 3.44
SH2 10.39 10.49 10.51 10.50 10.45 −0.52 −0.76 −0.60 −0.58 −0.59
F2 15.81 18.15 16.35 16.27 16.22 0.32 −1.71 −0.53 0.10 0.07
MgO 7.97 8.75 8.40 8.54 8.36 1.54 1.40 1.64 1.72 1.71
O3 12.85 13.29 13.56 13.34 13.27 1.82 1.32 2.19 2.23 2.17
C2H2 11.45 11.16 11.57 11.46 11.43 −0.80 −0.80 −0.71 −0.71 −0.71
HCN 13.76 13.50 13.86 13.75 13.73 −0.53 −0.61 −0.52 −0.55 −0.54
B2H6 12.27 12.84 12.81 12.67 12.64 −0.52 −0.64 −0.56 −0.55 −0.55
CH2O 10.93 12.09 11.39 11.33 11.25 −0.60 −0.70 −0.61 −0.62 −0.62
C2H4 10.69 10.26 10.74 10.70 10.67 −1.90 −0.86 −0.75 −0.73 −0.74
SiH4 12.79 13.23 13.22 13.15 13.11 −0.53 −0.69 −0.59 −0.57 −0.58
PH3 10.60 10.60 10.79 10.76 10.73 −0.51 −0.71 −0.58 −0.56 −0.57
CH4O 11.09 12.30 11.55 11.49 11.39 −0.59 −0.76 −0.64 −0.62 −0.63
H2NNH2 9.49 10.38 9.84 9.81 9.73 −0.60 −0.82 −0.69 −0.65 −0.65
HOOH 11.51 13.17 11.96 11.95 11.86 −0.96 −0.89 −0.75 −0.72 −0.72
KH 6.32 6.61 6.44 6.50 6.38 0.30 0.21 0.28 0.28 0.28
Na2 4.93 4.53 4.98 5.03 5.01 0.36 −0.01 0.26 0.27 0.30
HN3 10.77 11.00 11.12 10.92 10.89 −0.51 −0.75 −0.6 −0.56 −0.56
CO2 13.80 14.82 14.24 14.12 14.06 −0.88 −1.22 −0.98 −0.95 −0.95
PN 11.90 12.00 12.33 12.12 12.09 −0.02 −0.72 −0.03 0.02 0.00
CH2O2 11.54 12.94 12.00 11.97 11.88 −0.63 −0.79 −0.69 −0.66 −0.67
C4 11.43 11.61 11.77 11.57 11.54 2.38 0.58 2.24 2.29 2.30
C3H6 10.83 11.25 11.20 11.07 11.03 −0.94 −0.88 −0.75 −0.73 −0.73
C2H3F 10.63 10.48 10.84 10.73 10.69 −0.65 −0.80 −0.69 −0.68 −0.68
C2H4O 10.29 11.64 10.84 10.74 10.66 −0.54 −0.69 −0.56 −0.57 −0.57
C2H6O 10.82 12.05 11.37 11.25 11.15 −0.58 −0.78 −0.65 −0.62 −0.62
C3H8 12.13 12.73 12.61 12.51 12.46 −0.63 −0.83 −0.70 −0.67 −0.67
NaCl 9.10 9.60 9.20 9.25 9.16 0.67 0.56 0.64 0.64 0.64
P2 10.72 10.05 10.49 10.43 10.40 0.43 −0.35 0.47 0.48 0.47
MgF2 13.93 15.46 13.94 14.23 14.07 0.29 −0.03 0.15 0.21 0.21
OCS 11.23 11.44 11.52 11.37 11.32 −1.43 −1.27 −1.03 −0.97 −0.98
SO2 10.48 11.47 11.38 10.85 10.82 2.24 1.84 2.82 2.74 2.68
C2H3Cl 10.17 10.13 10.39 10.27 10.24 −0.61 −0.79 −0.66 −0.65 −0.65
MSE 0.56 0.29 0.23 0.17 −0.25 0.02 0.04 0.04
MAE 0.69 0.33 0.25 0.19 0.31 0.16 0.13 0.12
RMSE 0.87 0.43 0.29 0.23 0.49 0.28 0.23 0.22
SDE 0.68 0.31 0.18 0.16 0.43 0.29 0.23 0.22
Min −0.67 −0.29 −0.29 −0.32 −2.03 −0.85 −0.22 −0.25
Max 2.34 1.56 0.57 0.42 1.04 1.15 1.17 1.16

aThe statistical descriptors associated with the errors with respect to the reference values are also reported. All calculations are performed with the
aug-cc-pVTZ basis.
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MAE (0.23 and 0.25 eV, respectively) are also slightly improved
with respect to G0W0@HF (see Figure 5).
Let us now turn to our new method, the SRG-qsGW self-

consistent scheme. Table I shows the SRG-qsGW values for s =
103. The statistical descriptors corresponding to this alternative
static self-energy are all improved with respect to qsGW. In
particular, the MSE and MAE are decreased by 0.06 eV. Of
course, these are small improvements; but this is done with no
additional computational cost, and it can be easily implemented
in existing code by changing the form of the static self-energy.
The evolution of the statistical descriptors with respect to the
various methods considered in Table I is graphically illustrated
in Figure 4. The decrease of the MSE and SDE correspond to a
shift of the maximum of the distribution toward zero and a
contraction of the distribution width, respectively.
In addition to this improvement in terms of accuracy, the

SRG-qsGW scheme has been found to be much easier to
converge than its qsGW parent. Indeed, up to s = 103, it is
straightforward to reach self-consistency for the 50 compounds
at the SRG-qsGW level. For s = 5 × 103, convergence could not
be attained for 11 systems out of 50. However, this is not a
serious issue as the MAE of the test set is already well converged
at s = 103. This is illustrated by the green curve of Figure 6 which
shows the evolution of the SRG-qsGW MAE with respect to s.
The convergence plateau of the MAE is reached around s = 50,
while the convergence problems arise for s > 103. Therefore, for

future studies using the SRG-qsGW method, a default value of
the flow parameter equal to 5 × 102 or 103 is recommended.
On the other hand, the qsGW convergence behavior is more

erratic as shown by the blue curve of Figure 6 where we report
the variation of the qsGWMAE as a function of = s1/(2 ) .
At η = 10−2 (s = 5 × 103), convergence could not be reached for
13 molecules, while 2 systems were already problematic at η = 5
× 10−2 (s = 200). These convergence problems are much more
dramatic than for SRG-qsGW because the MAE has not reached
its limiting value before these issues arise. For example, out of
the 37 molecules that could be converged for η = 10−2, the
variation of the IP with respect to η = 5 × 10−2 can go up to 0.1
eV.
This difference in behavior is due to the energy (in)-

dependence of the regularizers. The SRG regularizer first
incorporates the terms with a large denominator and
subsequently adds the intruder states. Conversely, the imaginary
shift regularizer treats all terms equivalently.
Finally, we compare the performance of HF, G0W0@HF,

qsGW, and SRG-qsGW again but for the principal EAs ofGW50.
The raw data are reported in Table I, while the corresponding
histograms of the error distribution are plotted in Figure 7. The
HF EAs are, on average, underestimated with anMAE of 0.31 eV
and some clear outliers: −2.03 eV for F2 and 1.04 eV for CH2O,
for example. G0W0@HF mitigates the average error (MAE
equals to 0.16 eV), but the minimum and maximum error values
are not satisfactory. The performance of the two qsGW schemes
are quite similar for EAs withMAEs of the order of 0.1 eV. These
two partially self-consistent methods reduce also the minimum
errors, but interestingly, they do not decrease the maximum
error compared to HF.
Note that a positive EA indicates a bounded anion state,

which can be accurately described by the methods considered in
this study. However, a negative EA suggests a resonance state,
which is beyond the scope of the methods used in this study,
including the ΔCCSD(T) reference. As such, it is not advisible
to assign a physical interpretation to these values. Nonetheless, it
is possible to compare GW-based and ΔCCSD(T) values in
such cases, provided that the comparison is limited to a given
basis set.

VII. CONCLUSION
The present manuscript applies the similarity renormalization
group (SRG) to the GW approximation of many-body
perturbation theory, which is known to be plagued by intruder
states. The problems caused by intruder states in many-body
perturbation theory are numerous, but here, we focus on the
convergence issues caused by them.

Figure 5.Histogram of the errors [with respect toΔCCSD(T)] for the principal IP of the GW50 test set calculated using HF,G0W0@HF, qsGW, and
SRG-qsGW. All calculations are performed with the aug-cc-pVTZ basis.

Figure 6. Evolution of the SRG-qsGW (green) and qsGW (blue)MAEs
for the principal IPs of the GW50 test set as functions of s and η,
respectively. The bottom and top axes are related by s = 1/(2η2). A
different marker has been used for qsGW at η = 0.05 because the MAE
includes only 48 molecules.
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SRG’s central equation is the flow equation, which is usually
solved numerically but can be solved analytically for low
perturbation order. Applying this approach in the GW context
yields closed-form renormalized expressions for the Fock matrix
elements and the screened two-electron integrals. These
renormalized quantities lead to a regularized GW quasiparticle
equation, referred to as SRG-GW, which is themain result of this
work.
By isolating the static component of SRG-GW, we obtain an

alternativeHermitian and intruder-state-free self-energy that can
be used in the context of qsGW calculations. This new variant is
called SRG-qsGW. Additionally, we demonstrate how SRG-GW
can effectively resolve the discontinuity problems that arise in
GW due to intruder states. This provides a first-principles
justification for the SRG-inspired regularizer proposed in ref
101.
We first study the flow parameter dependence of the SRG-

qsGW IPs for a few test cases. The results show that the IPs
gradually evolve from the HF starting point at s = 0 to a plateau
value for s → ∞ that is much closer to theΔCCSD(T) reference
than the HF initial value. For small values of the flow parameter,
the SRG-qsGW IPs are actually worse than their starting point.
Therefore, it is advisible to use the largest possible value of s,
similar to qsGW calculations where one needs to use the smallest
possible η value.
Next, we gauge the accuracy of the SRG-qsGW principal IP

for a test set of 50 atoms and molecules (referred to as GW50).
The results show that, on average, SRG-qsGW is slightly better
than its qsGW parent. Despite the fact that the increase in
accuracy is relatively modest, it comes with no additional
computational cost and is straightforward to implement, as only
the expression of the static self-energy needs to be modified.
Moreover, SRG-qsGW calculations are much easier to converge
than their traditional qsGW counterparts thanks to the intruder-
state-free nature of SRG-qsGW.
Finally, the principal EAs of the GW50 set are also

investigated. It is found that the performances of qsGW and
SRG-qsGW are quite similar in this case. However, it should be
noted that most of the anions of the GW50 set are resonance
states, and the associated physics cannot be accurately described
by the methods considered in this study. Therefore, test sets of
molecules with bound anions, such as this one of organic
electron-acceptor molecules,182,203−205 and their accompanying
accurate reference values are greatly valuable to the electronic
structure community.
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