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ABSTRACT: State-specific electronic structure theory provides a route
toward balanced excited-state wave functions by exploiting higher-energy
stationary points of the electronic energy. Multiconfigurational wave function
approximations can describe both closed- and open-shell excited states and
avoid the issues associated with state-averaged approaches. We investigate the
existence of higher-energy solutions in complete active space self-consistent
field (CASSCF) theory and characterize their topological properties. We
demonstrate that state-specific approximations can provide accurate higher-
energy excited states in H2 (6-31G) with more compact active spaces than
would be required in a state-averaged formalism. We then elucidate the
unphysical stationary points, demonstrating that they arise from redundant
orbitals when the active space is too large or symmetry breaking when the active space is too small. Furthermore, we investigate the
singlet−triplet crossing in CH2 (6-31G) and the avoided crossing in LiF (6-31G), revealing the severity of root flipping and
demonstrating that state-specific solutions can behave quasi-diabatically or adiabatically. These results elucidate the complexity of
the CASSCF energy landscape, highlighting the advantages and challenges of practical state-specific calculations.

1. INTRODUCTION
Electronic excited states are fundamentally higher-energy
solutions to the time-independent Schrödinger equation.
“State-specific” (SS) representations can be identified using
higher-energy stationary points of the electronic energy
landscape.1 The exact excited states in full configuration
interaction (FCI) correspond to energy saddle points, and the
number of downhill Hessian eigenvalues increases with each
energy level.1−7 Higher-energy stationary points also exist in
nonlinear wave function approximations, but the development
of practical state-specific methods has been hindered by the
challenges of non-ground-state optimization, the nonlinearity
of the electronic energy landscape, and the presence of
unphysical solutions.
Instead, the workhorse of modern excited-state electronic

struture theory is linear-response time-dependent density
functional theory (LR-TDDFT), which predicts excitation
energies from the response of the ground-state electron density
to a weak external perturbation.8−10 Despite its computational
efficiency, LR-TDDFT inherits the failures of approximate
Kohn−Sham (KS) exchange−correlation functionals, creating
large errors for bond dissociation or open-shell electronic
states.11 Furthermore, the ubiquitous adiabatic approximation
excludes double excitations and their associated avoided
crossings.10,12 Alternative single-reference methods, such as

algebraic diagrammatic construction (ADC)13,14 and equation-
of-motion coupled cluster (EOM-CC),15,16 can provide more
accurate excitation energies at a greater computational cost but
depend strongly on the quality of the reference determinant.
The strong influence of the ground-state orbitals can also
create an unbalanced description of charge transfer and
Rydberg excitations,17,18 where significant electronic relaxation
can occur.8−10,19−21

These challenges have encouraged researchers to revisit
excited state-specific approximations. For higher-energy SCF
calculations (ΔSCF), this progress has been catalyzed by the
development of new optimization algorithms that avoid
variational collapse to the ground state, including the
maximum overlap method,22−24 square-gradient optimiza-
tion,25,26 state-targeted energy projection,27 quasi-Newton
direct orbital optimization,28−30 and generalized variational
principles.31 Recent calculations have shown that higher-
energy Hartree−Fock (HF) and KS-DFT solutions can
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accurately describe charge transfer and double excitations at a
low computational cost.22,26 Beyond SCF approximations,
higher-energy variational or projective coupled-cluster (ΔCC)
solutions can provide more accurate double and double-core
excitations by incorporating dynamic electron correlation.32−38

While ΔSCF and ΔCC are successful for double and charge
transfer excitations, these single-reference methods cannot
describe open-shell excited states and statically correlated
ground states. The onset of this failure usually becomes
apparent through spin contamination,39,40 spontaneous
symmetry breaking,11,23,39,41−45 and additional unphysical
solutions.32−35,37−39 Furthermore, the solutions of interest
can disappear as the molecular structure changes, creating
discontinuous excited-state energy surfaces or gra-
dients.38,39,46−50

Multiconfigurational SCF (MCSCF) methods,51 particularly
the complete active space self-consistent field (CASSCF)
formulation,52−54 are the state of the art for describing
statically correlated electronic systems.55 The CASSCF wave
function is a linear expansion of all the configurations that can
be constructed from a set of partially occupied “active orbitals”,
and the energy is optimized with respect to the configuration
interaction (CI) and orbital coefficients simultaneously.53 It
has long been known that higher-energy MCSCF solutions can
represent electronic excited states56−61 and that multiple
symmetry-broken CASSCF solutions can occur for an
inadequate active space.62,63 More recently, MCSCF ex-
pansions truncated to single excitations have shown promise
for singly excited charge transfer states,64−68 while state-
specific configuration interaction with higher degrees of
truncation can handle challenging multireference problems
and singly and doubly excited states.69 However, the strong
coupling between the orbital and CI degrees of freedom makes
the optimization challenging, and second-order optimization
algorithms are generally required to reach convergence in
practice.70−83

Extensive research in the 1980s focused on characterizing
higher-energy MCSCF solutions. It was originally suggested
that an nth excited state approximation should be the nth state
in the configuration expansion.73 However, this requirement is
often not achieved, resulting in “root flipping”.2,56,75

Furthermore, several stationary points satisfying this condition
can often be identified.3,5,84 The enormous complexity of the
multiconfigurational solution space led Golab et al. to conclude
that “selecting an MCSCF stationary point is a very severe
problem”.3 Instead, the state-averaged (SA) approach is
generally used, where a weighted average energy of the n
lowest CI states constructed from one set of orbitals is
optimized.75 While this approach has become the method of
choice for excited-state CASSCF, it has several disadvantages:
discontinuities can occur on the SA-CASSCF potential energy
surface if two states require orbitals with significantly different
character;85 the number of states is limited by the size of the
active space; large active spaces are required to target high-
lying states; and the Hellmann−Feynman theorem cannot be
applied to compute nuclear gradients because individual SA-
CASSCF solutions are not stationary points of the energy.
Multiconfigurational linear response formalisms86−88 can

also be applied to CASSCF reference wave functions to obtain
excitation energies.21,89 This approach avoids the challenges of
root flipping and can incorporate some state-specific orbital
relaxation, generally resulting in more accurate energies than
state-averaged formalisms.21 Furthermore, LR-CASSCF is

capable of describing excitations that are “outside” the active
space. However, as a linear response formalism, this approach
is still limited to one-electron excitations relative to the ground
state and will struggle for problems with a quasi-degenerate
ground-state wave function.
Instead, the limitations of current excited-state CASSCF

formalisms and the development of non-ground-state SCF
optimization algorithms have inspired several new investiga-
tions into state-specific CASSCF excited states. In particular,
Neuscamman and co-workers have developed generalized
variational principles90,91 and the WΓ approach inspired by
MOM-SCF,92 demonstrating that the issues of root flipping
and variational collapse to the ground state can be successfully
avoided. Despite these advances, we still do not have a
complete understanding of the multiple stationary points on
the SS-CASSCF energy landscape, and several practical
questions remain. For example, how many stationary points
are there, and how does this change with the active space or
basis set size? Where do unphysical solutions arise, what are
their characteristics, and when does symmetry breaking occur?
And finally, do state-specific excitations behave diabatically or
adiabatically as the molecular structure evolves?
In this work, our aim is to answer these questions and

establish a theoretical foundation for practical excited state-
specific calculations. Using second-order optimization techni-
ques, we investigate the existence and properties of multiple
CASSCF solutions in typical molecular systems. Our numerical
optimization exploits analytic gradients and second derivatives
of the CASSCF energy, and the relevant differential geometry
is summarized below. Using these techniques, we compre-
hensively enumerate the multiple CASSCF solutions in H2 (6-
31G) and characterize the resulting unphysical solutions. We
find that state-specific calculations can accurately describe
high-lying excitations with fewer active orbitals than state-
averaged formalisms and reveal that multiple solutions can
arise from active spaces that are too large or too small. We then
investigate the singlet−triplet crossing in CH2 (6-31G) and the
avoided crossing of LiF (6-31G), demonstrating the
importance and difficulty of selecting the correct physical
solution.

2. METHODS
2.1. Defining the CASSCF Wave Function. A multi-

configurational wave function is defined as a linear
combination of M many-body configurations:

Ck
I

M

Ik I
1

| = |
= (1)

where |ΦI⟩ are different configurations built from a common
set of molecular orbitals (MOs) ϕp(x) and the CIk are the
variable CI coefficients for state k.93 Here, x = (r, σ) is the
combined spatial and spin electronic coordinate. The
configurations |ΦI⟩ may be defined as Slater determinants,
which enable very efficient computational implementa-
tions,94,95 or configuration state functions (CSFs) that
explicitly preserve the ⟨Ŝ2⟩ symmetry.96 Here we only consider
the determinant-based expansion that is more common in
current CASSCF implementations. The MOs are constructed
as linear combinations of n (nonorthogonal) atomic orbitals
(AOs) χμ(x) as
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x x c( ) ( )p

n

p= ·
·

(2)

where we use the nonorthogonal tensor notation of ref 97 and
the c·p

μ· denote the variable MO coefficients. Normalization of
the wave function and orthogonalization of the MOs are
guaranteed by the constraints

C c c1 and ( )
I

M

I

n

p q pq
1

2

1

| | = * | =
= =

·
·

·
·

(3)

where ⟨χμ|χν⟩ are the AO overlap matrix elements. We will
only consider wave functions where CIk and c·p

μ· are real.
When every electronic configuration for a finite basis set is

included in an FCI expansion, the global minimum on the
parametrized electronic energy landscape corresponds to the
exact ground state.1 Excited states form saddle points of the
energy, and the number of downhill directions increases with
each excitation.1,3,6,7 The FCI wave function is invariant to
unitary transformations of the MOs, but the number of
configurations scales exponentially with the system size.
The complete active space (CAS) framework builds a

truncated expansion using every configuration within a set of
“active orbitals” that describe the dominant static electron
correlation.53 The orbitals are partitioned into inactive and
virtual orbitals that are doubly occupied or empty in every
configuration, respectively, and active orbitals with varying
occupations. Simultaneously optimizing the energy with
respect to the orbital and CI coefficients leads to the state-
specific CASSCF approach and gives true stationary points of
the electronic energy.53,54,74 If the CASSCF wave function
targeting the kth excited state is represented by the kth
eigenstate of the corresponding CAS-CI expansion, then the
Hylleraas−Undheim−MacDonald theorem98,99 also provides
an upper bound to the excited-state energy.3

2.2. Differential Geometry of the CASSCF Energy. We
exploit an exponential form of the CASSCF wave function that
conserves the orthogonality constraints (eq 3).70,72 Starting
from an initial CASSCF wave function |Ψ0⟩, an arbitrary step
can be defined using unitary transformations as

e eR S
0| = | (4)

where eR̂ and eŜ account for orbital relaxation and trans-
formations of the CI component, respectively. The R̂ operator
is anti-Hermitian and is defined using the second-quantized
creation and annihilation operators for the current MOs
as70,100

R R E
p q

pq pq=
> (5)

where the spin-adapted one-body anti-Hermitian replacement
operators are93

E a a a apq p q q p
,

=
{ }

† †

(6)

The invariance of the energy with respect to inactive−inactive,
active−active, and virtual−virtual orbital transformations
means that Rpq can be further restricted to only excitations
between different sub-blocks. Similarly, eŜ performs a unitary
transformation between the CI component of |Ψ0⟩ and the
remaining orthogonal states |ΨK⟩ in the current CASCI space,
with Ŝ defined as72

S S ( )
K

K K K
0

0 0= | | | |
(7)

Using the exponential parametrization, the CASSCF energy
can be expressed as

R SE H( , ) e e e eS R R S
0 0= | | (8)

where R and S are vectors that gather the Rpq and SK
coefficients in the orbital and CI transformations, respectively,
and Ĥ is the electronic Hamiltonian. Stationary points of E,
corresponding to optimal CASSCF solutions, then occur when
the gradients with respect to orbital and CI transformations are
simultaneously zero. Performing a Baker−Campbell−Haus-
dorff expansion of the energy to second order gives72

E H H R S

H R S R S

, ( )
1
2

, ( ) , ( ) ...

0 0 0 0

0

| | + |[ + ]|

+ |[[ + ] + ]| +
(9)

Expressions for the first- and second-derivatives of the energy
can then be identified as

E
R

H E,
R Spq

pq

0,

0 0= |[ ]|
= (10a)

E
S

H2
R SK

K
0,

0= | |
= (10b)

and

E
R R

P H E E
1
2

(1 ) , ,
R Spq rs

pq pq rs

0

2

,

,rs 0 0= + |[[ ] ]|
=

(11a)

E
R S

H E,
R Spq K

pq K

0

2

,

0= |[ ]|
= (11b)

E
S S

H E2
R SL K

K L
0,

0= | |
= (11c)

where E0 is the energy at R, S = 0, Ppq,rs permutes the (pq) and
(rs) indices, and the Hermiticity of Ĥ and [Ĥ, Êpq

− ] have been
exploited. Explicit formulas for these expressions have been
summarized elsewhere (see ref 4) but are given in Supporting
Information (SI) section S1 for completeness.
Note that the first and second derivatives can only be

computed when R = 0 and S = 0.100 Therefore, after taking a
step in the parameter space, the energy gradient and Hessian
must be computed using the new MOs and CI vectors
corresponding to the updated wave function. A similar shift in
the reference state after each step is also required for second-
order HF optimization algorithms.39,101

2.3. Characterizing Distinct Solutions. The invariance
to unitary transformations within each orbital partition means
that the same CASSCF wave function can be identified with
different CI or MO coefficients. We use the overlap between
two stationary solutions |xΨ⟩ and |wΨ⟩ to define a positive-
semidefinite distance metric:

d x w( , ) 1 x w= | | | (12)
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The overlap for two arbitrary CI wave functions with Mx and
Mw configurations, respectively, is given by

C Cx w

I

M

J

M

I
x

I
x

J
w

J
w

1 1

x w

| = * |
= = (13)

Since |xΨ⟩ and |wΨ⟩ have different sets of MOs, evaluating the
overlap matrix elements ⟨xΦI|wΦJ⟩ requires a nonorthogonal
framework. We compute these matrix elements using the
extended nonorthogonal Wick’s theory,102,103 which avoids the
computationally expensive generalized Slater−Condon
rules.104

To understand the MOs in a CASSCF solution, we
canonicalize the inactive and virtual orbitals and construct
natural orbitals within the active space. The canonical inactive
and virtual orbitals and their associated orbital energies are
identified by diagonalizing the relevant sub-blocks of the Fock
matrix, defined as93

F h pq sr pr sq( )
1
2

( )pq pq
rs

rs

Ä
Ç
ÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑ= + | |

(14)

where γpq are the one-body reduced density matrix elements in
the MO basis, hrq are the one-electron Hamiltonian matrix
elements, and (pq|rs) are the two-electron repulsion integrals.
The natural orbitals within the active space are the
eigenvectors of the one-body reduced density matrix, and
their eigenvalues are the occupation numbers np.

105

2.4. Optimization Techniques. Since we are concerned
with understanding the CASSCF solution space, we require an
algorithm capable of converging arbitrary stationary points on
the energy landscape, including minima and higher-index
saddle points. Higher-energy CASSCF stationary points are
notoriously difficult to converge due to the strong coupling
between the orbital and CI degrees of freedom56,60,61,72,77 and
the possibility of root flipping in the configuration space.75,106

Therefore, we employ second-order techniques that introduce
the orbital−CI coupling through the analytic Hessian matrix of
second derivatives. Very recent algorithmic developments have
shown that genuine second-order optimization can be applied
to large molecular systems and can converge challenging cases

where gradient-based first-order optimization fails.107,108 For
our purposes, full second-order optimization allows us to
systematically explore and characterize the state-specific
CASSCF energy landscape with confidence.
We search for multiple solutions using several initial guesses

generated using random orbital and CI rotations from the
ground-state HF solution. The eigenvector-following technique
with analytic gradient and Hessian information was used to
target stationary points with a particular Hessian index.109,110

While this method has been described in detail elsewhere (see
ref 111), we include a summary in SI section S2. Related
mode-following methods have previously been applied to
locate higher-energy electronic stationary points in multi-
configurational2−4,112 and single-determinant39 SCF calcula-
tions. The convergence behavior was further improved with a
modified trust region approach based on the dogleg
method.113 Trust region methods are a well-established
approach for controlling the convergence of second-order
methods in CASSCF calculations.77−80,107,108,114 Once a set of
stationary points have been identified, their evolution with
changes in the molecular structure can be determined by using
the optimized orbital and CI coefficients at one geometry to
define an initial guess at the next geometry. Since the Hessian
index may not be conserved along a reaction coordinate,2 these
subsequent calculations are performed using a trust region
Newton−Raphson algorithm, as described in SI section S3.
We have implemented this numerical optimization in an

extension to the PySCF software package.115 Our approach
employs a determinant-based expansion of the CAS-CI wave
function without any constraint on the total spin ⟨Ŝ2⟩. As we
shall demonstrate in section 3.2, this approach can result in
spin-contaminated wave functions that are genuine stationary
points of our CASSCF parametrization. The convergence
threshold for the root-mean-square value of the gradient
amplitudes was universally set to 10−8 Eh. The canonical and
natural orbitals for stationary points were subsequently
computed using PySCF and visualized using VMD.116 All
other graphical figures were created using Mathematica
12.0.117

Figure 1. State-specific CASSCF(2,2) stationary points can be identified for every excited FCI state in H2. Additional solutions can also be found
that dissociate to an unphysical electronic state.
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3. RESULTS AND DISCUSSION
3.1. Molecular H2 Dissocation. We start by considering

the H2 binding curve using the 6-31G basis set.118 To identify
all the CASSCF(2,2) solutions, a comprehensive search was
performed using up to 1000 random starting points for target
Hessian indices from 0 to 16. Solutions were identified near
the equilibrium geometry R = 1.0 a0 and the dissociation limit
R = 6.0 a0 and were then traced over all bond lengths, as shown
in Figure 1. We believe that we have found every stationary
point on the landscape, although the nature of nonconvex
optimization means that this can never be guaranteed. To the
best of our knowledge, this study is the first comprehensive
enumeration of the CASSCF solutions for a molecular system.

3.1.1. Excitations Near Equilibrium. Near the equilibrium
geometry, the ground state of H2 can be accurately described
using a single-reference approximation. We have identified 25
stationary points on the CASSCF(2,2) energy landscape using
the 6-31G basis set, corresponding to 19 singlet solutions and
six triplet solutions (Table I). Of course, this number will

increase for larger basis sets, as there will be more excited
states, although we show in section 3.1.2 that a larger basis set
can also give more unphysical solutions (Table II). Each of the
exact FCI states has a corresponding SS-CASSCF(2,2)
counterpart, and the energetic agreement between these
solutions is consistent for all excitations. We have also found
several additional solutions that appear to be less accurate
approximations to the exact states, which will be characterized
in sections 3.1.2 and 3.1.3. In comparison, the SA-CASSCF-
(2,2) approach can only describe the lowest triplet and the
three lowest singlet states, while increasing the number of

active orbitals to a (3,2) active space provides an
approximation to the lowest nine excitations.
These results demonstrate two important features of state-

specific calculations. First, they can describe more excited
states than state-averaged calculations by defining the active
space using only orbitals that are relevant for a particular
excitation. This property allows higher-energy excitations to be
predicted while avoiding large active spaces and the associated
increase in the configuration space. An upper bound to the
exact excited-state energy is only provided by stationary points
that correspond to the correct excitation within the CASCI
configuration space,3 although more accurate energies are
generally preferred even if they are not variational. Second,
bespoke orbital optimization for each state-specific solution
can give more accurate total energies for the excited states
compared to the state-averaged approach. For example, the
mean absolute deviations (MADs) for the lowest four states
are 2.5 and 17.8 mEh for the state-specific and state-averaged
CASSCF(2,2) approaches, respectively.
Using analytic second derivatives of the energy also allows

the nature of SS-CASSCF(2,2) stationary points to be
characterized according to their number of downhill directions.
The corresponding Hessian index for each solution is listed in
Table I. It is known that the exact nth excited state should have
n downhill directions.1,2,4 We find that the SS-CASSCF(2,2)
excited states are all saddle points on the electronic energy
landscape and that the Hessian index generally increases with
the energy, in common with the observations for other
theoretical approximations.22,25,37,39 However, except for the
lowest three exact states, the Hessian index does not provide a
reliable indicator of the corresponding exact excitation index.
This mismatch must always occur for higher-lying excited
states, as the approximate CASSCF(2,2) wave function has
fewer degrees of freedom than the exact formulation.
Consequently, if we only consider stationary points of the
correct Hessian index, then we must forego the advantages of
capturing state-specific excitations outside the state-averaged
active space.

3.1.2. Multiple Ground-State Solutions. While Table I
shows that a SS-CASSCF(2,2) approximation can be identified
for each exact eigenstate, we also find additional state-specific
solutions. In particular, there are three close-lying stationary
points that can be considered as approximations to the ground
state, with Hessian indices of 0, 1, and 2 in order of ascending
energy. This pattern of multiple solutions is repeated for the
(2σg)2 and (2σu)2 singlet configurations, while the other
closed-shell (1σu)2 configuration exhibits four close-lying
solutions. Choosing the most physical solution for each
eigenstate presents a challenge for state-specific CASSCF
approaches. Therefore, it is important that we understand their
mathematical origins and physical differences.
The natural orbitals in the active space provide a clear

explanation for the multiple H2 ground-state solutions. Figure
2A compares the natural orbitals and occupation numbers for
the three lowest-energy singlet stationary points. Since the
ground state at the equilibrium geometry can be relatively well
approximated by a single closed-shell Slater determinant, the
active space for each of these solutions includes a (1σg)-like
natural orbital that is almost completely doubly occupied. This
natural orbital dominates the electronic wave function, and the
corresponding energies are all relatively close approximations
to the exact ground state. However, the second active orbital,
which is almost completely unoccupied, is different for each

Table I. Energies of H2 at R = 1 a0 Using the 6-31G Basis
Set for Various Formalisms: FCI, SA-CASSCF(2,2), SA-
CASSCF(3,2), and SS-CASSCF(2,2)

State FCI SA(2,2) SA(3,2) SS(2,2) ⟨S2⟩ Index

0 −1.09897 −1.07170 −1.08924 −1.09225 0 0
−1.08569 0 1
−1.07871 0 2

1 −0.57616 −0.57166 −0.57406 −0.57417 2 1
2 −0.46395 −0.43494 −0.44196 −0.46368 0 2
3 −0.28180 −0.27990 −0.27990 2 2
4 −0.07450 −0.06164 −0.05946 0 3
5 0.32015 0.33066 0.32624 0.31914 0 3

0.31821 0 2
0.31844 0 2
0.32440 0 3

6 0.51519 0.51654 0.51638 2 3
7 0.57224 0.61682 0.61429 0 4
8 0.62520 0.62401 2 3
9 0.86353 0.86876 0.86392 0 5

0.85673 0 4
0.86266 0 4

10 0.96373 0.91147 0 4
11 1.30761 1.30572 2 4
12 1.46479 1.45704 0 5
13 1.61884 1.61685 2 5
14 1.81277 1.80747 0 6
15 2.71948 2.71766 0 7

2.70046 0 6
2.69883 0 5
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solution, corresponding to a (1σu), (2σg), or (2σu) orbital as
the energy increases, respectively. These higher-energy sta-
tionary points have downhill orbital rotations that interconvert
the multiple ground-state solutions and correspond to the
negative eigenvalues of the Hessian.
Different choices for the nearly unoccupied active orbital

have only a small effect on the total H2 energy near
equilibrium. However, the incorrect choice of the active
space becomes very significant as the bond is stretched toward
dissociation. Only the {1σg, 1σu} active space can correctly
dissociate into the H(1s)···H(1s) ground state of the
dissociated fragments (Figure 2B). In contrast, the binding
curves for the {1σg, 2σg} and {1σg, 2σu} solutions mirror the
RHF energy, as the corresponding wave functions are close to
a single Slater determinant at all geometries, with (1σg)
occupation numbers at dissociation of 1.997 and 1.999,
respectively. Notably, the stationary points preserve the
character of the active orbitals along the potential energy
surface, suggesting that SS-CASSCF solutions exhibit some
degree of diabatic character.
The same pattern of solutions is observed for the other

closed-shell solutions. However, the (1σu)2 configuration
exhibits an additional multiple solution where the nearly
unoccupied active orbital corresponds to a symmetry-broken
2s-like orbital localized on either the left or right H atom. This

symmetry breaking results in a twofold-degenerate pair of
stationary points.
These results indicate that additional solutions can arise

from the free choice of virtual orbitals when the active space is
larger than required for the degree of static correlation. Malrieu
and coworkers elegantly summarized this phenomenon by
stating that “the so-called valence CASSCF wave function does
not necessarily keep a valence character when the wave
function concentrates on a closed-shell valence bond
structure”.119 Therefore, we expect that the number of
ground-state solutions will increase combinatorially with the
number of active orbitals or the basis set size, and the number
of unphysical solutions can grow for larger active spaces even
though the correct ground-state solution will become more
accurate. Table II demonstrates this increase for H2 using the
6-311G basis set with three basis functions for each hydrogen
atom,120 which gives five ground-state solutions for the (2,2)
active space compared to the three found using 6-31G.
Furthermore, in the (3,2) active space, there are two redundant
active orbitals beyond the 1σg orbital that must be chosen from
the five remaining orbitals, giving a total of 10 solutions

through the binomial coefficient( )5
2 10= . The relative energy

ordering of these additional solutions will depend on the
amount of dynamic correlation captured by the redundant

Figure 2. There are three SS-CASSCF(2,2) solutions that represent the exact ground state in H2. (A) Comparison of the natural orbitals for each
ground-state solution at R = 1.0 a0. (B) Only the lowest-energy solution dissociates correctly, while the higher-energy solutions mirror the restricted
Hartree−Fock binding curve.

Table II. Close-Lying Ground-State (n,2) SS-CASSCF Energies (in Eh) of H2 at R = 1 a0 Using the 6-311G Basis Set for
Various Active Space Sizes n

SS(1,2): HF −1.08025

SS(2,2) −1.09429 −1.08866 −1.08074 −1.08033 −1.08026

SS(3,2) −1.10195 −1.09500 −1.09436 −1.09429 −1.08904
−1.08886 −1.08867 −1.08082 −1.08075 −1.08034

SS(4,2) −1.10251 −1.10212 −1.10196 −1.09507 −1.09500
−1.09437 −1.08923 −1.08905 −1.08886 −1.08083

SS(5,2) −1.10267 −1.10251 −1.10213 −1.09507 −1.08924

SS(6,2): FCI −1.10267
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active orbitals, which may not correspond with the same
orbital required to capture the static correlation in the
dissociation limit. This phenomenon has previously been
described for MgO, where oxygen-centered orbitals are
preferred over the magnesium d orbitals,91 and transition
metal compounds, where nonvalence d orbitals may be
preferred over certain valence d orbitals.121

3.1.3. Open-Shell Singlet and Triplet Excitations. The low-
lying open-shell triplet and singlet (1σg)1(1σu)1 configurations
are represented by only one SS-CASSCF(2,2) solution across
the full binding curve (Figure 1). These single solutions arise
because all the active orbitals are required to describe the two-
configurational static correlation and there is no flexibility for
multiple solutions to exist. In addition, SS-CASSCF(2,2) gives
an accurate representation of the open-shell (1σg/u)1(2σg/u)1
configurations. However, the accuracy of these solutions
deteriorates in the dissociation limit, where additional
symmetry-broken solutions can be identified (Figure 3).

These additional solutions break spatial symmetry and
spontaneously appear at instability thresholds that are
multiconfigurational analogues to the Coulson−Fischer
points41 in HF theory.42,122−125 Each stationary point is a
pure singlet or triplet state and has a twofold degeneracy,
reflecting the left−right symmetry of the molecule.
The origin of this symmetry breaking is explained by

considering the correlation processes involved in the excited
dissociation limit. These excited states dissociate to hydrogenic
(1s)1(2s)1 configurations, where the occupied 1s and 2s
orbitals can either be on the same or different atomic centers.
Taking the latter case as an example, the corresponding open-
shell singlet wave function at large nuclear separations has the
form

1
2

( 1s 2s 1s 2s )( )L R R L| = | + | | |
(15)

Correctly describing this wave function requires an active space
with four spatial orbitals {1sL, 1sR, 2sL, 2sR}, or equivalently
{1σg, 1σu, 2σg, 2σu}, and thus, the SS-CASSCF(2,2)
approximation is insufficient for these correlation mechanisms.

Instead, the symmetry breaking reduces the SS-CASSCF(2,2)
wave function to a subset of the dominant configurations, e.g.,

1
2

1s 2s ( )L R| = | | |
(16)

The CASSCF configurations corresponding to each symmetry-
broken solution are assigned in Table III. This “pinning” of the

wave function onto a particular electronic configuration is
directly analogous to the symmetry breaking phenomena
observed in HF theory126,127 and demonstrates that the active
space is too small to fully account for the static correlation.
From the energy landscape perspective, the onset of

symmetry-broken CASSCF(2,2) states is associated with a
change in the Hessian index for the associated symmetry-pure
solutions. For example, the symmetry-broken state D (Table
III) emerges from the symmetry-pure (1σg)1(2σg)1 triplet state
at an instability threshold close to R = 2.28 a0. The Hessian
index of the symmetry-pure state changes from 2 to 3 at this
point, while the symmetry-broken solutions form index-2
saddle points, leading to a higher-index analogue of a cusp
catastrophe.39,40,128 Practically, the emergence of a zero
Hessian eigenvalue at these instability thresholds may hinder
the numerical optimization of second-order techniques onto
these higher-energy stationary points. It is also interesting to
note that while the symmetry-broken solutions describe two
degenerate FCI states at dissociation, they only connect to one
of the corresponding symmetry-pure solutions in the
equilibrium region. Consequently, one cannot rely on these
additional solutions to obtain an accurate and continuous
representation of every excited state across all geometries.
3.2. Singlet−Triplet Crossing in Methylene. We next

consider the bending mode of methylene, which has a diradical
ground state with 3B1 symmetry and a low-lying 11A1 excited
state. The bond length was fixed to the value R(C−H) = 2.11
a0 identified by Bauschlicher and Taylor,129,130 and the 6-31G
basis set was used.118 Methylene has a long history as a
benchmark for electronic structure theory.131 One of the
primary questions is the description of the singlet−triplet
crossing between the low-lying 3B1 and 11A1 states.

3.2.1. Local Minima for the Minimal (2,2) Active Space. A
minimal two-configuration wave function is required to
qualitatively describe both the lowest-energy singlet S0 (1A1)
and diradical triplet T0 (3B1) states.

129 Therefore, we begin by
analyzing the SS-CASSCF(2,2) energy landscape. The S0 and

Figure 3. Spontaneous symmetry breaking occurs when the active
space is not large enough to capture all the important configurations
in the physical wave function, as illustrated for the 1s2s states in the
dissociation of H2 (6-31G).

Table III. Symmetry-Broken CASSCF(2,2) Solutions in the
Dissociation of H2 are Twofold-Degenerate and Represent
Dominant Configurations in the Exact Excitations

State Energy/Eh ⟨S2⟩ Configuration

A 0.543355 0.00
1s 2s ( )

1s 2s ( )

L L

R R

l
mooo
n
ooo

| | |

| | |

B 0.293363 2.00
1s 2s ( )

1s 2s ( )

L L

R R

l
mooo
n
ooo

| | + |

| | + |

C −0.037221 0.00
1s 2s ( )

1s 2s ( )

L R

R L

l
mooo
n
ooo

| | |

| | |

D −0.037499 2.00
1s 2s ( )

1s 2s ( )

L R

R L

l
mooo
n
ooo

| | + |

| | + |
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T0 states are the ground states for small and large bond angles,
respectively, and provide an example of a singlet−triplet
crossing separating the two regimes. At bond angles of 76°,
102°, and 130°, a large number of stationary points can be
identified with a variety of Hessian indices. Therefore, we
simplify our analysis by focusing on a subset of low-energy
solutions that resemble the desired physical states (Figure 4).
The energetic minimum of the S0 state occurs at a bond

angle of 103.7°. While the S0 state is the first excited state at
this geometry, we find that the corresponding SS-CASSCF-
(2,2) stationary point is a local minimum rather than an index-
1 saddle point. This incorrect Hessian index arises from a root
flip in the configuration space, where the singlet state is the
ground state for the corresponding active orbitals. When the
bond angle increases, this singlet state eventually becomes an
index-1 saddle point. Similarly, when the bond angle decreases
from 103.7°, the T0 state remains a local minimum beyond the
point where it becomes the first excited state. This process
behaves like an unphysical hysteresis, where the ground state
remains a local minimum for a small region after a crossing
point before becoming an index-1 saddle point at an instability
threshold.
An additional index-1 saddle point can be identified that

connects these two solutions and coalesces with each local
minimum at the two instability thresholds. This unphysical
index-1 stationary point is twofold-degenerate, has symmetry-
pure spatial orbitals, but is spin-contaminated with an ⟨Ŝ2⟩
value that changes continuously from 0 to 2 as it connects the
singlet and triplet states. Similar patterns of coalescing
solutions have been observed in single-determinant SCF
approximations,40,122,132,133 particularly in the generalized HF
representation of a crossing between states with different ⟨Ŝz⟩
values.134

In contrast to symmetry-broken SCF orbitals, the spin
contamination observed here arises from mixing singlet and
triplet states in the configurational part of the wave function.
Therefore, although the current implementation employs a
determinant-based expansion, this spin contamination will still
occur using a linear combination of all configuration state
functions with ⟨Ŝz⟩ = 0 rather than a determinant-based
expansion. Spin contamination could be avoided explicitly by
including a spin-penalty function135 or if the CASSCF wave

function is constructed from a linear combination of CSFs with
the desired ⟨Ŝ2⟩ value.136−142

Since the S0 solution has only one significantly occupied
active orbital, we predict the existence of closely related
solutions that have alternative redundant orbitals with nocc ≈ 0.
Indeed, there are a pair of degenerate local minima that lie
slightly lower in energy than the S0 solution. In contrast to the
H2 ground state, including the inactive space means that
methylene has multiple doubly occupied orbitals, and thus, the
active orbital with nocc ≈ 2 may also change between different
solutions. The active orbitals for these symmetry-broken
solutions are localized bonding σ and antibonding σ* orbitals
for one of the two C−H bonds, and the degeneracy accounts
for the two possible ways to localize onto one bond. Notably,
the symmetry breaking here is associated with an active space
that is too large, in contrast to H2, where symmetry breaking
arises from an insufficient active space for the static correlation.
These solutions are local minima across all the bond angles
considered. While they provide an accurate energy for the S0
state near the singlet equilibrium structure, this deteriorates for
large angles, as the active space cannot describe the diradical
open-shell 1Σg

+ state at the linear geometry. Their existence
indicates that the C−H σ/σ* configurations provide an
important contribution to static correlation and should ideally
be included in the active space, as suggested by Bauschlicher
and Taylor.129,130

3.2.2. Full Valence Active Space. Using the full-valence
(6,6) active space, we find that the symmetry-pure singlet state
is now correctly represented by an index-1 saddle point at a
bond angle of 102° (Figure 5). The unique downhill direction
corresponds to a rotation in the configuration space only, as
expected for the first excited state. Despite the larger active
space, a root flip still occurs as the states approach the singlet−
triplet crossing at 82.2°, with the singlet state becoming a local
minimum at 89.6° and the triplet state becoming an index-1
saddle point at 77.0°. Like the (2,2) active space, a degenerate
pair of unphysical, spin-contaminated index-1 saddle points
connect the solutions that cross at the crossing point. This
phenomenon occurs because the orbital optimization can
lower the energy of the target excited state below that of the
corresponding ground-state configuration when the energy gap
becomes small. Therefore, while larger active spaces will

Figure 4. Low-lying SS-CASSCF(2,2) states in the bending mode of methylene representing the 13B1 and 11A1 configurations. (A) Both states
remain local minima (solid purple) for a short region beyond the singlet−triplet crossing before becoming an index-1 saddle point (solid cyan). An
additional spin-contaminated index-1 saddle point (dashed cyan) connects the two instability thresholds (black dots). Two degenerate local
minima exist everywhere along the bending curve (dashed purple) with an active space containing C−H bonding σ and antibonding σ* orbitals.
(B−E) The natural orbitals at a bond angle of 103.7° are illustrated for each solution.
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reduce the range of molecular geometries affected, these
unphysical local minima will be common for state-specific
crossing points between different spin states.
While the larger active space alleviates root flipping, it also

causes more unphysical solutions associated with redundant
active orbitals. For example, the triplet ground state
(dominated by two configurations) is represented by one SS-
CASSCF(2,2) solution, but there are several higher-energy
solutions in the (6,6) active space. Analogously to the H2
ground state, these additional solutions have higher Hessian
indexes, with two index-1 and one index-2 saddle points
represented in Figure 5. Again, the main difference from the
true ground state is the active orbitals with occupation
numbers close to zero, as illustrated for the global minimum
and lowest-energy index-1 saddle point in Figure 6.
Furthermore, we find an additional local minimum and
index-1 saddle point that represent the 1A1 state. While all
the triplet solutions give approximately the same equilibrium
bond angle, the unphysical stationary points shift the crossing
point to coincide with the singlet equilibrium geometry. This
qualitative change in the energy surface would create a near-
barrierless decay from the singlet excited state to the triplet

ground state, demonstrating the importance of verifying the
physicality of state-specific solutions.
3.3. Avoided Crossing in Lithium Fluoride. 3.3.1. Phys-

icality of Multiple Solutions. The LiF binding curve provides a
typical example of an avoided crossing. The ground state has
ionic character at equilibrium but becomes a covalent state
with almost no dipole moment in the dissociation limit.
Multiple HF solutions are known to behave “quasi-diabatically”
and cross each other at the physical avoided crossing.47,143 On
the other hand, Bauschlicher and Langhoff demonstrated that
this avoided crossing can lead to discontinuities in the
CASSCF ground- and excited-state energy surfaces.144 Here
we start by considering the state-specific singlet CASSCF
solutions in the 6-31G basis set.
Using the minimal (2,2) active space, we search for

stationary points with Hessian indices of 0 to 10 at R(Li−F)
= 2.75 a0 (near the equilibrium geometry) using 1000 random
starting points for each index. The active space for the SS-
CASSCF global minimum contains the valence bonding σ and
antibonding σ* orbitals with occupation numbers close to 2
and 0, respectively (Figure 7B). Because the exact wave
function is dominated by a single closed-shell configuration,
there are many additional solutions that are close to the
ground-state energy at the equilibrium geometry. For example,
the second-lowest-energy solution has an active space
containing the out-of-plane fluorine 2px/y and 3px/y orbitals
with occupation numbers close to 2 and 0, respectively (Figure
7C). This active space accounts for the radial correlation on
the fluorine atom, providing a more balanced description of F
and F−.144 In contrast, the exact excited state is more
multiconfigurational at short bond lengths and is accurately
represented by only one solution (Figure 7D), alongside a
spurious symmetry-broken solution with diradical character
(Figure 7E). These characteristics are reversed for bond
lengths longer than the avoided crossing, where the excited
state has closed-shell character with a large number of
solutions and the ground state is represented by only two
solutions.
State-specific CASSCF solutions can behave both quasi-

diabatically and adiabatically in the vicinity of the avoided
crossing. As the bond length changes, the unphysical solutions
do not have the correct active orbitals to capture the strong
correlation at the avoided crossing. Therefore, the two lowest-
energy unphysical solutions intersect quasi-diabatically (dark

Figure 5. Low-lying SS-CASSCF(6,6) states for the bending mode of
methylene representing the 13B1 and 11A1 configurations. The full-
valence (6,6) active space introduces more unphysical solutions but
does not remove the spin-contaminated solution that arises at the
crossing point.

Figure 6. Comparison of the active orbitals for the two lowest-energy triplet CASSCF solutions for CH2 (6-31G) using the full valence (6,6) active
space at a bond angle of 102°. (A) The active orbitals for the local minimum represent the chemically intuitive valence space. (B) For the
unphysical index-1 saddle point, one of the antibonding C−H σ* orbitals with nocc ≈ 0 is replaced by a carbon 3p orbital with nocc = 0.0029. The
remaining σ and σ* orbitals localize onto the C−H bonds.
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purple in Figure 7A, corresponding to the solutions in Figure
7C and 7E). On the other hand, the physically meaningful
solutions behave adiabatically and correctly avoid each other
(cyan in Figure 7A). In principle, a linear expansion of both the
quasi-diabatic and adiabatic states may provide a more accurate
representation of the avoided crossing by introducing some of
the dynamic correlation captured by the unphysical solutions.
This expansion would require a multiconfigurational variant of
nonorthogonal CI,143 where the Hamiltonian and overlap
matrix elements can be efficiently computed using the
nonorthogonal framework developed in refs 102 and 103.
While a complete description of the avoided crossing

requires dynamic correlation,145 the advantage of state-specific
orbital relaxation is still clear in the dissociation limit. The
physical SS-CASSCF excitation energy tends toward the exact
FCI result for the separated Li+···F− configuration, while state-
averaged calculations (with an equal weighting for the two
states) provide an overestimate (Figure 7A). In this SS-
CASSCF solution, the σ and σ* orbitals (Figure 7A) both
localize to give 2pz orbitals that accurately represent the F−

anion. Consequently, as expected, the state-specific formalism
provides a more accurate representation of this charge transfer
excitation than a state-averaged approach.

3.3.2. Elucidating the Bauschlicher−Langhoff Disconti-
nuity. The seminal CASSCF investigation of LiF, by
Bauschlicher and Langhoff, highlighted the presence of a
discontinuity in the ground-state dipole moment in the vicinty
of the avoided crossing.144 This discontinuity is a signature of a
discontinuity in the wave function, which manifests as a cusp in
the corresponding energy surface. This phenomenon, which
we name the “Bauschlicher−Langhoff discontinuity”, has long
been used as key evidence for the potential issues of state-
specific calculations in the vicinity of an avoided crossing.
Malrieu and co-workers attributed its origin to a near
degeneracy between the closed-shell ionic and open-shell
covalent configurations and described a lower-energy covalent
state that emerges from a potential symmetry-breaking point as
the bond length increases.119 The framework developed here
and the advance in computing over the past 30 years now allow
this topological characterization to be rigorously tested.

To identify the relevant solutions, we searched for minima
and index-1 saddle points at a bond length of 8.50 a0 using
1000 random starting points, a (2,2) active space, and the
original basis set described in ref 144. At R(Li−F) = 8.5 a0, the
global minimum corresponds to the covalent structure
identified in ref 119. In addition, two local minima and two
index-1 saddle points exist at higher energies, representing the
ionic configurations (Figure 8). As the bond length is
shortened, there is a crossing between the lowest-energy
ionic and covalent minima near R(Li−F) = 7.4 a0, which we
believe corresponds to the previously described discontinu-
ity.119,144

Figure 7. (A) The SS-CASSCF(2,2) approach gives many solutions for the LiF binding curve (6-31G) when the ground or excited state is
dominated by a single configuration. Ground- and excited-state solutions with a suitable active space (B, D) behave adiabatically at the avoided
crossing (cyan lines). Additional solutions with unsuitable active orbitals can represent either the ionic equilibrium configuration (C) or the
covalent dissociation configuration (E) and behave quasi-diabatically at the avoided crossing (purple lines). The active orbitals are plotted at R(Li−
F) = 4 a0. Exact FCI and SA(2)-CASSCF(2,2) data are taken from ref 47.

Figure 8. Topology of the low-energy SS-CASSCF(2, 2) solutions
near the Bausclicher−Langhoff discontinuity in LiF119,144 using the
basis set defined in ref 144. A cusp in the ground-state energy occurs
when two local minima cross, while the covalent structure coalesces
with an index-1 saddle point at a pair annihilation point (black dot).
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Topologically, two nondegenerate minima cannot coalesce
without the presence of an index-1 saddle point, and thus, the
disappearance described by Malrieu and co-workers cannot be
the full picture.119 Instead, we find that the covalent structure
crosses the two lowest-energy local minima and eventually
coalesces with an index-1 saddle point representing the ionic
configurations. Following the downhill directions from this
index-1 saddle point reveals that it connects the covalent local
minimum with the lowest-energy ionic local minimum.
Furthermore, the downhill Hessian eigenvector has significant
orbital and CI components, which highlights the strong
coupling between the different degrees of freedom in the
vicinity of the avoided crossing. Both solutions disappear at
this point (black dot in Figure 8), and thus, there is no quasi-
diabatic covalent solution at shorter bond lengths.
In the mathematical framework of catastrophe theory,146 this

type of coalescence can be classified as a fold catastrophe or a
pair annihilation point. Singularities in this class have
previously been identified and characterized for multiple HF
solutions,122 where they most commonly occur in asymmetric
molecules, for example LiF,47,143 H−Z40 (for a partial nuclear
charge Z), and ethylene analogues.40 The discontinuous jump
in the energy at the pair annihilation point in LiF will create
issues for calculations that attempt to follow the covalent
solution across multiple bond lengths, making these solutions
unsuitable for techniques such as ab initio molecular dynamics.
Furthermore, since the lowest-energy covalent and ionic local
minima cross rather than coalesce, the gradient of the global-
minimum energy at the crossing point is discontinuous and
there is an unphysical cusp in the resulting energy surface.
The absence of this pair annihilation point using 6-31G

compared to Bauschlicher and Langhoff’s basis set demon-
strates how the topology of multiple CASSCF solutions can be
affected by the AO basis. We suspect that these differences
arise from the subtle changes in the underlying energy
landscape that affect the relative stability of different solutions.
However, these results demonstrate the danger of generalizing
conclusions from one basis set to another, even for the same
molecule.

4. CONCLUSIONS
State-specific approximations promise to provide a more
balanced representation of electronic excitations by independ-
ently optimizing both the ground- and excited-state wave
functions. In this work, we have investigated the energy
landscape for excited state-specific stationary points in the
multiconfigurational CASSCF approach. We have shown how
state-specific approximations can accurately describe high-
energy and charge transfer excitations, beyond the reach of
state-averaged calculations with small active spaces. However,
the CASSCF energy landscape can have a large number of
stationary points, which complicates the selection and
interpretation of physically relevant solutions.
Multiple stationary points in state-specific CASSCF

calculations arise through two primary mechanisms. First,
many solutions occur when the active space is too large for the
static correlation that must be described. In this case, the
redundant active orbitals with nocc ≈ 0 can be interchanged
with virtual orbitals without significantly changing the energy,
creating a series of stationary points with an increasing number
of downhill Hessian eigendirections. Active orbitals with nocc ≈
2 can be interchanged with doubly occupied inactive orbitals in
a similar fashion. The number of these solutions grows as the

AO basis set gets larger. On the other hand, symmetry-broken
solutions occur when the active space is too small to describe
the static correlation mechanisms, causing the CASSCF wave
function to become “pinned” onto a subset of the
configurations in the exact wave function. These results
demonstrate the importance of finding a “Goldilocks region”
where the active space is neither too large or too small but just
right.
Unphysical solutions can have important consequences for

the resulting potential energy surfaces. For example, while
choosing the wrong active space only introduces a small energy
error when the wave function is dominated by a single closed-
shell configuration, it can prevent the CASSCF wave function
from correctly capturing static correlation when the molecular
structure changes. The active space for stationary points does
not change significantly along a reaction coordinate, meaning
that the incorrect active orbitals remain for all geometries. For
ground-state calculations, one can rely on following downhill
directions away from saddle points to obtain a more suitable
local minimum, hopefully with the best active space. However,
it is hard to predict which Hessian index will give the most
physical stationary point for an excited state, and thus,
choosing the most accurate excited-state stationary point is
challenging without prior chemical intuition. It has long been
known that the right choice of active orbitals is key to the
success of CASSCF, but the current results demonstrate the
severity of this challenge for state-specific excitations.
In addition, we have investigated the topology of SS-

CASSCF(2,2) solutions near the singlet−triplet crossing in
CH2 and the covalent−ionic avoided crossing in LiF. We
observe unphysical root flipping where the CH2 excited-state
solution is a local minimum near the crossing point before
becoming an index-1 saddle point further along the reaction
trajectory. This phenomenon occurs because the state-specific
orbital optimization artificially stabilizes the local minima, and
this is still present in the full-valence (6,6) active space.
Furthermore, the change in Hessian index is associated with an
additional spin-contaminated index-1 saddle point that
connects the singlet and triplet stationary points. The presence
of zero Hessian eigenvalues at these instability thresholds may
cause numerical issues for second-order optimization algo-
rithms. On the other hand, for the LiF avoided crossing, we
have observed the coalescence of the local covalent minimum
with an index-1 saddle point representing the ionic state, which
both disappear entirely at shorter bond lengths. While this
pairwise coalescence depends on the basis set, it would
catastrophically affect the applicability of SS-CASSCF for
generating smooth and continuous potential energy surfaces.
Moving forward, SS-CASSCF calculations must overcome

the troublesome issues of multiple solutions. Practical solutions
may rely on the identification of suitable initial guesses from
more black-box techniques or by focusing on optimization
algorithms that target desirable excited-state physical proper-
ties (e.g., dipole moments), such as the generalized variational
principles developed by Hanscam and Neuscamman.91

Alternatively, more bespoke excited-state wave function
ansaẗze, such as minimal configuration state functions69 or
excited-state mean-field theory,64,65,68 may remove unphysical
solutions associated with redundant active orbitals and avoid
the disappearance of solutions at pairwise coalescence points.
Surmounting these issues will allow the benefits of state-
specific calculations for computing excited states with bespoke
orbitals and small active spaces to be fully realized.
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