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Real materials always contain, to some extent, randomness in the form of defects or irregularities. It is known
since the seminal work of Anderson that randomness can drive a metallic phase to an insulating one, and the
mechanism responsible for this transition is intrinsically different from the one of the interaction-induced transi-
tions discovered by Mott. Lattice Hamiltonians, with their conceptual and computational advantages, permitted
to investigate broadly the interplay of both mechanisms. However, a clear understanding of the differences (or
not) with their real-space counterparts is lacking, especially in the presence of long-range Coulomb interactions.
This work aims at shedding light on this challenging question by investigating a real-space one-dimensional
model of interacting electrons in the presence of a disordered potential. The transition between delocalized and
localized phases is characterized using two different indicators, namely, the single-particle occupation entropy
and the position-space information entropy. In addition, the performance of density functional approximations
to reproduce the exact ground-state densities of this many-body localization model are gauged.
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I. INTRODUCTION

Being able to describe the metallic or insulating behavior
of any given material is certainly a desirable feature for an
electronic structure method. Unfortunately, this question is
quite nettlesome and remains an open problem. One of the
challenges is that various intrinsically different mechanisms
can drive a metal to an insulating phase and would need to
be described at the same time. For example, in Mott insu-
lators, the transition is due to electron-electron interactions
[1,2]. Indeed, if interactions become predominant over kinetic
energy, this will lead to the localization in space of the elec-
tronic density. Hence, this decrease of the electrons mobility
induces a decrease of the conductivity of the material. These
interaction-driven metal-insulator transitions are not restricted
to long-range Coulomb interactions, as Hubbard showed that
Mott transitions can also occur in lattice model Hamiltonians
with short-range on-site interactions [3]. On the other hand,
systems of noninteracting particles can also be driven to the
insulating phase but through a totally different mechanism.
The seminal work of Anderson showed that the conductivity
of a system of noninteracting particles can go to zero as soon
as the external medium/potential is disordered enough [4]. Of
course, actual electrons are interacting and any real material
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has a given degree of disorder, so a clear understanding of
the interplay of these two phenomena is an important chal-
lenge towards the description of real materials. Note that other
mechanisms of metal-insulator transitions exist but are out of
the scope of this work [5,6].

One of the challenges when studying such phenomena is
to find a way to characterize the different phases as well as
transitions between them. The usual approach to distinguish
metals and insulators is to consider their low-energy excita-
tion spectra [7,8]. However, in a seminal paper, Walter Kohn
showed that the arrangement of electrons in the many-body
ground state already contains all the information necessary
to distinguish between metallic and insulating phases [9]. A
plethora of indicators trying to quantify the (de)localization
of electrons have been designed and investigated since. In the
following we will mention some of them but this list shall not
be considered exhaustive.

As the previously mentioned Hubbard model, lattice mod-
els in general have been a crucial tool to study Mott and
Anderson transitions as well as their interplay [8,10,11].
One of the key advantages of lattice Hamiltonians is that
the associated Hilbert space has a tensor-product structure
which gives a straightforward way of evaluating entangle-
ment [12,13]. Single-site entanglement measures are a natural
way of quantifying correlation in lattice models and as such
are a powerful tool to identify transition between different
phases. It has been applied to study the Mott transition in
various dimensions [14–17], Anderson transitions [10], Mott-
Anderson transitions [10,11,18], and more generally many-
body localization in spin chains and various other models
[19,20].
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For continuous space Hamiltonians, it is a priori not
straightforward to define such entanglement measures, so
other quantities have been designed to study metal-insulator
transitions from the ground-state perspective. Note that these
quantities can be, and have been, also used in lattice models.
Concepts imported from information theory like the Shannon
information entropy can be useful to study the localization of
electrons. If the electronic density is considered as a continu-
ous random variable, then the associated Shannon information
entropy will quantify its lack of information. This means
that it will be maximal for a totally delocalized density and
minimal if the electrons are fully localized [21,22]. Other
information entropy like the Kullblack-Leibler divergence ap-
plied to densities corresponding to different orbitals can also
be useful [20]. Using the two-body reduced density matrix
(RDM) in addition to the electronic density to compute the
localization tensor can give further valuable information about
the arrangement of the electrons within the ground-state,
hence about their metallic or insulating character [23–27].
In addition to the electronic density or the two-body RDM,
the single-electron picture provided by the eigenfunctions and
eigenvalues of the one-body RDM (natural orbitals and their
occupation numbers), is also an available tool to study such
transitions. The natural occupation numbers can be used to
compute the single-particle occupation entropy, also known
as von Neumann entropy of the one-body RDM, correlation
or Jaynes entropy [21,22,27–29]. The natural orbitals give
complementary information about the system, i.e., its char-
acteristic localization length, through the inverse participation
ratio [28].

Besides understanding and characterising the physics of
Mott-Anderson transition, it is crucial to know which compu-
tationally affordable approximate methods are able to capture
it. One of the most successful methods to compute ground-
state energies and densities, both in quantum chemistry
and condensed matter physics, is Kohn-Sham (KS) density
functional theory (DFT) [30]. Although exact in principle,
KS DFT must in practice rely on approximations for the
exchange-correlation (XC) functional, which typically strug-
gle to describe strongly correlated systems. The well-known
local density approximation (LDA) gives a qualitatively good
description of metallic electrons but fails badly to describe
the insulating electrons in the Mott phase, and so do all other
current semilocal and hybrid (mixing Hartree-Fock exchange)
approximations [31]. A promising way of describing strong
correlation within DFT is based on an expansion in the limit
of infinite coupling strength [32–36], yielding the so-called
strictly correlated electrons (SCE) functional [37–40]. The
resulting KS SCE formalism, although far from perfect, has
been proven successful in qualitatively describing systems in
which the electron-electron interaction is predominant over
the kinetic energy, i.e., Mott insulators like systems. One can
then wonder if this approximation is still sufficient to describe
strongly interacting particles in a disordered medium, shed-
ding light to new avenues to build XC approximations [41].

The aim of this work is precisely to investigate these
two crucial points, namely, (i) the characterization of the
Mott-Anderson physics for real-space Hamiltonians with
long-range interactions and (ii) its description within KS DFT.
To this purpose, we have selected a setting that allows us

to obtain very accurate solutions (that we call “exact” in
the following) for the many-body Hamiltonian: few elec-
trons confined in a one-dimensional box with a disordered
potential, interacting with the Coulomb long-range potential
(renormalized at contact to mimic interactions in a thin quan-
tum wire [42]). We first address point (i) by investigating
the Mott-Anderson physics in the exact case, studying dif-
ferent indicators and their ability to characterize the different
regimes, moving to point (ii) by studying the performance
of various approximations (LDA, SCE, and also exact ex-
change), compared to the exact case. We analyze densities and
XC potentials, providing insights to build new XC functionals.

The paper is organized as follows: in the following Sec. II,
the system that will be studied is described in detail, and a
brief outline of KS SCE theory is given, while computational
details are provided in Sec. III. The interaction- and disorder-
induced transitions are investigated separately in Secs. IV A
and IV B. The central point of the manuscript, which is the
interplay of interaction and disorder, is divided in two parts,
Secs. IV C and IV D, in which the exact and approximate de-
scription of this interplay are described, respectively. Finally,
Sec. V draws some conclusions.

II. THEORETICAL BACKGROUND

A. Hamiltonian

Throughout this manuscript the following N-electron one-
dimensional Hamiltonian will be considered

Ĥ = −1

2

N∑
i

∂2

∂x2
i

+
∑
i< j

wint(|xi − x j |) +
∑

i

vext(xi ), (1)

where the external potential is

vext(x) = vbox(x) + vrand(x) (2)

with

vbox(x) =
{

0 − L
2 � x � L

2

+∞ x ∈ R \ [ − L
2 , L

2

] (3)

and

vrand(x,V, σ ) = V
M∑

i=1

vie
− (x−Xi )2

2σ2 , (4)

i.e., the random potential is constituted of M Gaussians cen-
tered at random positions Xi with width σ and amplitudes
viV where vi are random numbers between 0 and 1. If we
remove the interparticle interaction, the parameter L in the
remaining single-particle Hamiltonian (1) can be absorbed by
scaling, such that x ∈ [− 1

2 , 1
2 ]. With the interparticle interac-

tion present in Eq. (1), the parameter L becomes an effective
interaction-strength parameter. Hereafter we stick to these
scaled units, and fix M = 300 and σ = 0.02. With this choice,
by increasing V we can go from no disorder, to the quantum
tunneling regime (E � V � σ−2), up to trivial localization
in just one of the random potential wells. We will refer to a
given couple of random sets {vi} and {Xi} as a realization of
disorder. Within a realization, two parameters can be varied,
the disorder strength V and the interaction strength L.

In one-dimensional systems, the short-range divergence of
the Coulomb potential 1/|x| would force nodes in the wave
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function whenever two particles are at a contact, and would
make the mean-field Hartree functional of Eq. (9) infinite. The
physics of three-dimensional systems with Coulomb interac-
tion is then much better mimicked by an interaction that is
finite at contact. In this work the interaction function wint in
(1) is chosen to be

wint(x) =
√

π

2b
exp

(
x2

4b2

)
erfc

(
x

2b

)
, (5)

which is the effective electron-electron interaction corre-
sponding to a model 1D quantum wire of thickness b, in
which the lateral degrees of freedom have been averaged over
a narrow harmonic confinement. This interaction still behaves
as 1/|x| for large x [42]. Hereafter b is set to 0.1. Note that an
LDA parametrization is available for this interaction [43,44].

B. Density functional theory and its approximations

It is known, thanks to the Hohenberg–Kohn theorem [45],
that the ground-state energy E0 of the Hamiltonian (1) is a
functional of the electronic density ρ,

E0 = min
ρ

E [ρ]

= min
ρ

{
min
�→ρ

〈�|T̂ + Ŵint|�〉 +
∫

dr vext(r)ρ(r)

}
, (6)

where T̂ and Ŵint are the kinetic energy and electron-electron
interaction operators, respectively. The first term of the right
hand side in (6) is the so-called Levy-Lieb functional denoted
hereafter as F [ρ] [46]. In the KS formulation of DFT [30],
this latter is expressed as

F [ρ] = Ts[ρ] + U [ρ] + Exc[ρ], (7)

the different terms being the KS kinetic energy

Ts[ρ] = min
�→ρ

〈�|T̂ |�〉, (8)

the Hartree energy

U [ρ] = 1

2

∫
dx1dx2 wint(|x1 − x2|)ρ(x1)ρ(x2), (9)

and the remainder Exc[ρ], known as the exchange-correlation
energy functional, contains all the complexity of the Levy–
Lieb functional and needs to be approximated in practice.

Unfortunately, designing approximations for Exc[ρ] which
successfully describe strongly correlated systems is a nettle-
some problem. In particular, the functionals built with the
traditional ingredients forming the so-called Jacob’s ladder
of DFT are known to fail in such situations. On the other
hand, the strictly correlated electrons (SCE) formalism uti-
lizes intrinsically different ingredients which can be used to
construct functionals adapted to strong correlation. In the
KS-SCE scheme, the Hartree-exchange-correlation functional
EHxc = U + Exc is approximated as [37]

W SCE
int [ρ] = min

�→ρ
〈�|Ŵint|�〉, (10)

i.e., as the minimum of the electronic interaction over all the
wave functions yielding the density ρ. Note the close connec-
tion between Eq. (10) and the KS kinetic energy functional of
Eq. (8). In other words, the KS-SCE approximation replace

the minimum of the sum in the Levy–Lieb functional as the
sum of the minima

F [ρ] = min
�→ρ

〈�|T̂ + Ŵint|�〉 ≈ Ts[ρ] + W SCE
int [ρ], (11)

thus providing a lower bound to F [ρ].
While the KS functional defines a fictitious system of

noninteracting particles with density ρ, the SCE functional
defines in an analogous way a fictitious system of infinitely
interacting particles yielding the density ρ. In the SCE sys-
tem the position of an electron determines the position of
the remaining N − 1 electrons, therefore describing the sit-
uation of perfect correlation. The position of the electron i
is quantified by the co-motion function fi[ρ](x) where x is
the position of the first electron. These co-motion functions
(or “optimal maps”) can be constructed exactly [47,48] for
the one-dimensional case considered here. The probability of
finding the first electron at x should be equivalent to the one
of finding the electron i at xi so the co-motion functions must
fulfill the following condition:

ρ(x)dx = ρ( fi(x))dfi(x). (12)

In addition, the indistinguishability of the electrons is most
naturally imposed by enforcing the following group structure
on the co-motion functions [33]

f1(x) = x, f2(x) = f (x), . . . , fN (x) = f N−1(x) and

f N (x) = x, where f N (x) = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
N times

(x). (13)

The SCE functional is fully determined by the comotion func-
tions fi(x) [33,49],

W SCE
int [ρ] = 1

2

∫
dx ρ(x)

N∑
i=2

wint(|x − fi(x)|), (14)

and its functional derivative with respect to the density ρ(x),
vSCE[ρ](x) ≡ δW SCE

int [ρ]/δρ(x) satisfies the equation [38]

∂vSCE[ρ](x)

∂x
=

N∑
i=2

w′
int(|x − fi(x)|) sign(x − fi(x)). (15)

Therefore, from the comotion functions corresponding to a
given density ρ, one can compute the SCE functional (14) and
the SCE potential by integration of (15). In one-dimensional
systems, the comotion functions are exactly [47,48] obtained
by integration of (12) with the total suppression of fluctuations
boundary conditions∫ fi+1(x)

fi (x)
dx′ ρ(x′) = 1, (16)

which yields the following expression:

fi(x) =
{

N−1
e (Ne(x) + i − 1) x � N−1

e (N + 1 − i),

N−1
e (Ne(x) + i − 1 − N ) x > N−1

e (N + 1 − i),
(17)

where Ne(x) is the electronic density cumulant function

Ne(x) =
∫ x

−∞
dx′ ρ(x′). (18)
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The KS equations can then be solved self-consistently using
this analytical expression of the co-motion functions to com-
pute the SCE potential, which acts as an approximation to
the Hartree and exchange-correlation potential. This approx-
imation is asymptotically exact in the low-density limit. In
addition to this SCE formalism, two more typical KS approx-
imations will be considered for comparison, namely, LDA
and exact exchange (EXX). The LDA parametrization for this
one-dimensional interaction is taken from Refs. [43,44]. The
EXX exchange-correlation functional has only the exchange
part, which is taken to be the KS one. For the case of two
electrons, the KS exchange functional is equal to minus the
half of the Hartree functional defined in (9), and for the ground
state it is equivalent to the Hartree–Fock approximation.

C. Localization indicators

Before turning to the results of this manuscript, we discuss
the different indicators that will be used and gauged through-
out this work. The main indicator considered here is the single
particle occupation entropy

S = −Tr(γ ln(γ )) = −
∑

α

nα ln(nα ), (19)

where nα are the natural spin-orbital occupation numbers of
γ , with

γ (x, x′) =
∫

�(x, x2, . . . , xN )∗

×�(x′, x2, . . . , xN )dx2 · · · dxN , (20)

the one-body RDM associated to the wave function �. Bera
et al., showed that S can be used, or more precisely its variance
with respect to various realizations of disorder, as an indicator
of disorder-induced localization transition in the Anderson-
Hubbard model [28]. Note that this is not specific to this
model as it is now well-known that strong fluctuations are
ubiquitous at the edge of the many-body localization transi-
tion [19,20,50]. This entropy is also referred as correlation
entropy, as S increases when the correlation in the system
increases [29,51]. This will be a useful property to study the
Mott transition (see Sec. IV A).

However, this entropy has a few drawbacks for our pur-
pose. The sole Anderson transition in Sec. IV B is defined for
noninteracting particles, hence in this case the single-particle
entropy is constant because the natural occupation numbers
are constants equal to 0 or 1 for all disorder strengths. In
addition, because the auxiliary KS system uses noninteracting
particles to approximate the true interacting system, the KS
single-particle occupation entropy is constant for all interac-
tion strengths L and all disorder strengths V . Therefore the
position-space information entropy will be considered as an
alternative to the single-particle entropy of Eq. (19). This
alternative entropy is defined as the Shannon entropy of the
electronic density normalized to one electron, i.e.,

Sρ = −
∫

ρ(x)

N
ln

(
ρ(x)

N

)
dx. (21)

The Shannon entropy of a continuous probability variable
quantifies its lack of information. Therefore, in this case, it

means that Sρ will be maximal for a uniform density and
minimal if the electrons are perfectly localized.

III. COMPUTATIONAL DETAILS

A. Numerically accurate many-body calculations

Near exact many-body wave functions have been obtained
by representing the Hamiltonian of Eq. (1) as a sparse matrix
using a grid of 512 equidistant points, Dirichlet boundary con-
ditions and tenth-order finite-difference approximation for the
second-order derivative. Then, the diagonalization was per-
formed using Krylov iterative subspaces as well as the filtering
algorithm described in Ref. [52]. The convergence criteria was
chosen as |Ĥ� − E�| < 10−10. Because the computational
cost of these near-exact solutions is growing exponentially
fast with the number of particles, this study is restricted to
two electrons. Moreover, only singlet wave functions has been
considered as the ground state is always a singlet for this
system (in the large interaction limit the singlet and triplet
become degenerate).

B. DFT calculations

The various flavors of KS DFT considered in this work
have been implemented with the aid of the open-source PYSCF

package [53]. To represent the kinetic energy a second-order
finite-difference approximation was used on a grid of 512
equidistant points. The computation of the cumulant Ne(x),
the comotion functions fi(x), the SCE functional W SCE

int [ρ]
and its functional derivative vSCE[ρ](x) was performed using
jax [54]. For large interaction strengths, level shifts have been
used to converge the KS SCE solutions.

IV. RESULTS

A. Mott transition

In order to focus on the sole effect of interaction, the
random potential of Eq. (4) is set to 0 in this section. This
special case of Mott transition where the localization is only
due to electron-electron interaction, i.e., the positions of the
localized electrons are not simply determined by the external
potential, is known as a Wigner transition (see Ref. [55]). Fig-
ure 1 shows the exact ground-state electronic densities (green
lines) of two interacting electrons in a box for various values
of the effective interaction strength L. The difference is readily
seen between the two regimes in which either the kinetic
energy or the interaction energy is predominant. For L = 1
the density is centered around x = 0 and the two electrons are
delocalized over the whole box, while for larger interactions
each electron is localized in one side of the box (see the
L = 100 panel).

The associated single-particle occupation entropy is given
in the top panel of Fig. 2 (solid line). When L tends to zero, the
entropy tends to zero as well, which means that in this limit
the two opposite spin electrons occupy the same orbital. As
soon as the interaction is increased, S starts to grow and even-
tually goes to an asymptotic limit value equal to 2 ln(2) which
corresponds to two singly occupied orbitals. The derivative of
this entropy with respect to the interaction strength L is dis-
played as well (dashed line). Note that the derivative is slightly
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FIG. 1. Exact, KS SCE, KS LDA, and KS EXX ground-state electronic densities for two electrons in a box without external potential for
various effective interaction strength L.

negative for L � 20. The maximum of the derivative (L = 2.7)
marks the onset of the Mott-like transition and can be used to
define a critical Mott interaction strength. Alternatively, one
could define this Lc as the value of L at which the entropy
reach the 2 ln(2) value, which gives Lc = 8.5. Note that the
definition of Lc is somewhat arbitrary in this case but this
concept will be useful later to study the influence of disorder
on interaction-induced transition.

The bottom panel shows the corresponding position-space
information entropy. This entropy is increasing for small val-
ues of L before decreasing when L goes to infinity as expected
because the electrons are localized in this limit. This max-
imum of the entropy can be understood by looking at the
second panel of Fig. 1 (L = 2.5) where one can see that the

FIG. 2. Single-particle occupation entropy (top panel) and
position-space information entropy (bottom panel) of the ground-
state of two electrons in a box without external potential for various
effective interaction strength L. The dashed lines are the derivative
of the interpolated solid lines.

density is enlarged when compared to the leftmost panel.
Indeed, the density is deformed due to this stronger repul-
sion between the electrons, yet, the interaction is not strong
enough to localize them on each side of the box. Therefore the
position-space information entropy goes through a maximum
of delocalization at intermediate L before decreasing towards
localization. The position of this maximum can be used as
a definition of Lc for this indicator. This gives a value of Lc

equal to 5.8 which is in qualitative agreement with what has
been observed using the single-particle occupation entropy.

The densities obtained with three different KS approxi-
mations (SCE, LDA, and EXX) are also plotted in Fig. 1.
In the weak interaction regime, every approximation gives
fairly good results in terms of the density. Note that even if
the SCE density is correct for small L, the associated SCE
total energy is a poor approximation to the exact value in
this high-density limit [37]. When the interaction strength is
increased, LDA and EXX fail to reproduce the localization of
the electrons. At L = 100, their densities are almost totally
delocalized. LDA looks slightly better than EXX, because it
can produce two small localized bumps, but this is likely a
boundary effect (for example, the two bumps in LDA disap-
pear in an harmonic confinement, while still present in the
exact and SCE case [37,38]). On the other hand, SCE is able
to localize the electrons on each side of the box, getting at least
qualitatively right results. However, SCE still does not localize
the electrons enough, as can be seen on the two rightmost
panels of Fig. 1. The SCE functional finds the minimum of the
interaction energy for a given density [see Eq. (10)], hence this
energy is underestimated with respect to the exact one, which
leads to this slight underlocalization in the large L limit.

That this localization of electrons happens for larger in-
teraction strengths in SCE than in the exact case can also
be observed by looking at the corresponding position-space
information entropies. Indeed, according to Fig. 2 the value
for Lc in the SCE case is 21.5. We do not report the entropy
for the two other approximate KS methods as they fail to
localize the electrons therefore the associated entropies are
not meaningful. Thus, in this case, the Shannon entropy is a
qualitatively good indicator that can be used for KS approxi-
mations.
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FIG. 3. Exact, KS SCE, KS LDA, and KS EXX ground-state electronic Hartree-exchange-correlation KS potentials (minus the energy of
the highest occupied molecular orbital) for two electrons in a box without external potential for various effective interaction strength L.

To conclude this section focusing on the sole role of
interaction, the exact KS potential (obtained by reverse engi-
neering as described in Ref. [56]) is compared to the SCE,
the LDA and the EXX ones in Fig. 3. We have reported
the Hartree-exchange-correlation potential (which inside the
box corresponds to the total KS potential) minus the highest
occupied orbital energy (HOMO). We see that in the weakly
correlated regime (small L) there are no classically forbid-
den regions inside the box, a case that is qualitatively well
described by all approximations. The onset of interaction-
induced localization corresponds to a peak in the exact KS
potential that creates classically forbidden regions inside the
box. This peak is known to have an important correlation ki-
netic energy component [57–63], which is missing in the SCE
potential [31]. We see however that SCE does have a peak,
though not enough pronounced, and it is the only approxima-
tion able to create a classically forbidden region in the center
of the box. Both EXX and LDA have a completely wrong
behavior for large L: except for boundary effects, they are
converging towards a uniform density with uniform external
potential. The self-consistent creation of classically forbidden
regions to localize the charge density appears to be a key
feature for the description of strong correlation in KS DFT.

B. Anderson transition

In this second section, the other physical phenomena of
interest for this study is isolated, namely, the influence of
the disordered potential, thus removing the interaction term
in Eq. (1). Figure 4 shows the ground-state densities of two
noninteracting electrons for various values of the disorder
strength V [see Eq. (4)] corresponding to the same realization
of disorder. It is clear that the electrons become more and
more localized as the disorder strength is increased. Through-
out this evolution three different regimes can be distinguished.
First, for small V , the density is delocalized over a large
part of the box (see V = 10). On the other hand, for large
disorder strengths the electrons are localized in (almost) only
one well of the random potential. This regime is referred
to as “trivial localization” as the potential hills are so large
that the two electrons will simply localize in the lowest well.

For intermediate V , the competition between localization due
to the external potential and the kinetic energy which tends
to delocalize the electrons is more subtle. For example, at
V = 25, the electrons are localized in one part of the box, yet
delocalized over several wells and hills of potentials. This is
the so-called “quantum tunneling regime.” This plot has been
reproduced for other realizations of disorder in Ref. [64].

At this point, it is interesting to note a major difference
between the localized phases due to interaction or disorder.
In the former case, the electronic density has a two-peak
structure with each peak integrating to one. Each electron is
not pinned to one side, they can both be found on both sides
but never on the same side. Hereafter, we will refer to it as
electron localization for the sake of conciseness while it would
be more precise to name it charge density localization. Note
also that in this study, we do not consider localization due to
artificial symmetry breaking. On the other hand, in the latter
case, the two electrons are both in the same localized orbital.
Due to this difference, the existence of a localized phase in the

FIG. 4. Electronic densities (solid lines) of two noninteracting
electrons for various values of the potential strength V . The height
of the potential (dashed line) is nonindicative, it has been adjusted
just to show its shape on the same plot.
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FIG. 5. Mean value (solid line) and variance (dashed line) of the
Shannon entropy of the densities of two noninteracting electrons by
averaging over 500 different realizations of the random potential (4).

presence of both interactions and disorder is a subtle question.
Indeed, interactions and disorder could interfere destructively
and break the localization. On the contrary, the two mecha-
nisms could reinforce each other and accentuate it. Before
looking at this interplay, the indicators of localization as a
function of the disorder strength are analyzed.

Because the two particles are noninteracting the single-
particle occupation entropy is of no use in this case. The
position-space information entropy averaged over 500 realiza-
tions for various values of disorder strength is plotted in Fig. 5
(circle dots). As expected from the densities of Fig. 4, the
entropy is continuously decreasing when the disorder strength
is increasing. However, this smooth decrease of Sρ does not
give much information on the transition between the three
regimes introduced previously. One can gain more insights
on this by considering the variance of Sρ . Figure 5 shows the
variance averaged over the 500 realizations. Its peak structure
is characteristic of the large fluctuations happening at the tran-
sition regime between the delocalized and localized phases,
i.e., the quantum tunneling regime. Then, one can define a
critical disorder strength Vc as the position of this peak, which
gives Vc = 29.5.

C. Interplay of interaction and disorder: exact solutions

The interplay of interactions and disorder is now consid-
ered. As a first step, the focus is only on the exact solutions
and the approximate descriptions will be investigated in the
following section. Figure 6 shows the ground-state densities
for various values of the interaction and disorder strengths
(note that this plot has been reproduced for other realizations
of disorder in Ref. [64]). For this section, only the green
curves corresponding to the exact solutions need to be con-
sidered. Rows correspond to interaction-induced transitions
while columns describe disorder-induced transitions. The first
row corresponds to an interaction-induced localization transi-
tion in the presence of weak disorder. In this case the random
potential alters slightly the surface of the densities but the
overall shapes of the density along the transition is similar
to the case without disorder displayed in Fig. 1. Similarly,
the disorder-induced transition in the presence of weak inter-
actions (see the first column) is very close to the Anderson
transition for noninteracting particles of Sec. IV B.

However, in the nine remaining panels, where both the
interactions and the disordered potential have considerable
effects, their interplay becomes more interesting. For exam-
ple, the rightmost column shows the densities for increasing
disorder of two strongly interacting electrons. One can see
that each particle is going through the three regimes of the
Anderson transition on their respective side of the box. Note
that the quantum tunneling regime of the left and right par-
ticles do not happen at the same disorder strengths. On the
other hand, the Mott-like transition in the presence of a strong
external potential (see last row) is much steeper than the one
of Fig. 1. Indeed, in this case the density is not deformed con-
tinuously by the increase of the interaction strength. The two
electrons stay confined in the lowest well of potential until the
interaction becomes too strong so that one electron jumps into
another localized orbital. If the interaction is further increased,
one of the electron will continue to jump in other localized
orbitals further away from the remaining electron (see V = 50
and 75 for L = 50).

In between these extreme regimes, the densities exhibits
a subtle mix of both localization mechanisms, i.e., the disor-
der potential which drives the electrons in a part of the box
while the interactions between electrons favors a two peaks
structure. This plot of the densities helps to grasp qualita-
tively the interplay of interest for this study, however to draw
conclusions about it one needs to consider statistic means of
indicators of localization over a large number of realizations.

Figure 7 shows the evolution with respect to L of the
means, over 200 realizations of disorder, of the single-particle
occupation entropy (top panel) and the position-space infor-
mation entropy (bottom panel) for various values of V . It
is readily seen on the top panel that the step structure of S
observed in Fig. 1 is preserved by the inclusion of the external
potential. However, the random potential leads to a delay of
this jump of S from 0 to 2 ln(2). This means that the Mott-like
transitions are shifted to larger interaction strengths as the
Coulomb interaction needs to overcome the effect of disorder
which favors putting both electrons in the same localized or-
bital. In addition to the mean of the single-particle occupation
entropy, also its variance is considered and plotted in the inset
of the top panel of Fig. 7. Note that there is no variance for
V = 0, since all realizations are the identical. In the presence
of disorder, the variance of S exhibits the expected peak struc-
ture at the delocalization-localization edge. The position of the
maxima of the various variance plots can be used to define an
alternative critical interaction strengths Lc. The ordering (and
qualitatively their position) of these maxima agrees with the
ones obtained using the two arbitrary definitions of Lc defined
in Sec. IV A for V = 0.

Now turning to the second indicator of interest in this
study, the plots of Sρ (L) for different disorder strengths are
displayed at the bottom panel of Fig. 7. Note that they have
been shifted to ease the visualization of their differences, the
unshifted values are plotted in Ref. [64]. The interpretation
of the effect of the random potential on Sρ as a function
of L is not as straightforward. Indeed, the overall shape of
the curves is not the same in the weak and strong disorder
regime. For weak disorder, the observed trend is the same
as for the V = 0 case of Fig. 2. Hence, one can use the
same criteria to define a critical interaction strength. However,
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FIG. 6. Exact, KS SCE, KS LDA, and KS EXX ground-state electronic densities for a given realization of disorder with various effective
interaction strengths L and disorder strengths V .

for medium and large disorder the Sρ (L) function has a
smooth-step shape (see V = 25, 50, and 75). In this regime,
the densities evolve from one localized peak to two local-
ized peaks. Therefore they are more delocalized and Sρ is
larger in the large L limit. One can still define the critical
interaction strength as the value of L at which the step reach
the maximum plateau. Hence, the position-space information
entropy seems to exhibit the same trend for the values of
Lc as a function of disorder as the single-particle occupation
entropy.

To confirm this, the variance of the position-space infor-
mation entropy is considered as well. In the medium-large
disorder strength regime, the variance displays the charac-
teristic peak structure. However, in the weak disorder case,
the variance seems to be of no use to locate the transition.
Therefore the position-space information entropy may not be
a good choice, or at least should be used with care, as an
approximate indicator to study interaction-induced transition.

To conclude this study of this many-body localization
model, the complementary point of view is considered, i.e.,
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FIG. 7. Single-particle occupation entropy (top panel) and
position-space information entropy (bottom panel) as a function of
L for various disorder strengths V averaged over 200 realizations.
The two insets represent the variance associated to the entropies of
their respective panel.

the influence of interactions on the critical disorder strength
Vc. Analogously to the previous discussion on Lc, the mean of
the single-particle occupation entropy as well as its variance
are investigated. They are plotted in the top panel of Fig. 8 and
its inset, respectively. Note that the variances in the inset have
been rescaled to be all visible on the same plot. For any value
of L, S tends to 0 in the large V limit, i.e., a doubly occupied
orbital. As can be seen in the inset, the variance also exhibits
a peak structure along the V axis. Note that for L = 50, one
can only see the onset of the decrease of S as well as the onset
of the peak of the variance. The position of these maxima are
used to define a critical disorder strength Vc in presence of
interactions. The effect of interactions on these maxima is to
delay them which means that the disorder-induced transitions
are happening for larger disorder strengths.

The case of L = 50 is particularly interesting as its variance
present an additional smaller maximum for V ≈ 25. Indeed,
the associated mean value of S reaches a plateau equal to
2 ln(2) around this value of V and then start to decrease to-
wards 0 at V ≈ 200. This additional maximum corresponds to
the Anderson localization of both particles in their respective
side of the box observed in the last column of Fig. 6. Note
that the convergence of the L = 1 and L = 2.5 curves is really
slow due to some large outliers. The cause of appearance of
these outliers is explained in Ref. [64].

FIG. 8. Single-particle occupation entropy (top panel) and
position-space information entropy (bottom panel) as a function of
V for various interaction strengths L averaged over 500 realizations.
The two insets represent the variance associated to the entropies of
their respective panel.

Once again the performance of the position-space informa-
tion entropy as an approximate indicator is compared to the
single-particle occupation entropy. The mean values of Sρ (V )
are plotted in the bottom panel of Fig. 8 and the associated
variances are displayed in the inset. The position and ordering
of the maxima of the variance σ (Sρ ) are in good agreement
with the ones of the single-particle occupation entropy. In
addition, the variance of Sρ (V ) for L = 50 also shows a first
small maxima and the onset of a second maxima similarly to
what has been observed for the variance of σ (S).

D. Interplay of interaction and disorder: DFT approximations

This final section deals with DFT approximations and their
description of Mott-Anderson physics. The focus will be on
the qualitative description of the densities. Indeed, because
this is only a toy model of many-body localization quantifying
the errors of approximate indicators is not really relevant
in this context. In addition, computing approximate statis-
tic values would not give more physical insights than what
has been investigated in the exact case of Sec. IV C. Hence,
the ground-state densities of the three KS DFT approxima-
tions considered in Sec. IV A are now studied in presence of
disorder.
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FIG. 9. Exact, KS-SCE, KS-LDA, and KS-EXX ground-state Hartree exchange correlation potentials for two electrons in the presence of
a random potential (V = 50) for various effective interaction strength L. We have added different constant shifts to each potential to make it
easier to visualize the different shapes.

The first column of Fig. 6 shows that the three approx-
imations perform similarly in the weak interaction regime.
The approximate densities are slightly over-delocalized in the
weak and medium disorder regime while this error is getting
smaller when V is increasing. This is expected as when V
grows the system is becoming more and more driven by the
one-body part of the Hamiltonian, therefore reducing the im-
portance of the approximate methods errors in the description
of interactions.

As what has been observed for the V = 0 case in Sec. IV A,
LDA and EXX are unable to describe the strong interaction
regime. For weak disorder, the LDA and EXX wrongly pre-
dict delocalized densities (see V = 10/L = 50 panel) while
in the large disorder strength limit, the two approximations
display densities with a large number of peaks instead of the
two sharp peaks of the exact solutions (see V = 75/L = 50
panel). On the other hand, the SCE approximation describes
qualitatively well the interplay of interaction and disorder.
Still there is a tendency to not localize enough analogous
to what has been observed in the Mott transition without
disordered potential. This under-localization can be witnessed
in the panels L = 10/V = 10 and V = 25 for example. This
is due to the SCE localization of electrons happening too late
(in terms of interaction strengths L) compared to the exact
case (see discussion in Sec. IV A). It is interesting to note
that the external potential can improve the performance of
SCE. For example, in the L = 10 case, for no disorder (see
Fig. 1) or weak disorder (V = 10 panel) SCE drastically fails
to reproduce the two peak structure. However, for medium and

strong disorder, SCE correctly predicts the two peak structure
observed in the exact case.

To conclude this result section, the KS potentials associ-
ated to the densities of Fig. 6 are shown in Fig. 9. Notice
that we have added different constant shifts to each poten-
tial to make it easier to visualize the different shapes. We
see that when the interaction is weak (L = 1 and 2.5), all
potentials are qualitatively similar, with a maximum inside
the region in which the density is large. When the density
starts to show localization on well separated regions, the LDA
and EXX starts to be qualitatively wrong: instead of having
a maximum in the region in between the localization peaks
of the density, they have a maximum where the density is
localized. This is very similar to the error shown in stretched
bonds in chemistry. KS SCE has a maximum localized in
the right positions, but, again, way too low as it misses the
kinetic correlation part. In the L = 50 case, the exact potential
shows a peak and a step structure, again reminiscent of what is
observed in stretched heteronuclear bonds [57–63]. KS LDA
and EXX are completely wrong as, again, they display peaks
where the density is localized, which make the self-consistent
density ends up being too delocalized. KS SCE, although very
different than LDA and EXX, is also not able to fully produce
the correct step, in agreement with the analysis of Ref. [65].

V. CONCLUSIONS

Many-body localization, the field of physics studying iso-
lated many-body systems in the presence of disorder, is an
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increasingly active research domain [66,67]. This efferves-
cence is due to its relevance for a large panel of areas of
physics as well as its connections to the foundation of sta-
tistical mechanics. The main advances in understanding this
complex phenomenon came from lattice Hamiltonian models,
and especially from the one-dimensional ones. Indeed, these
models offers an incredible gain in terms of computational
cost while retaining most of the physics of their real-space
counterparts. Yet, a clear understanding of the differences
between real-space and lattice models remains desirable to be
aware of possible flaws of lattice models.

The one-dimensional Hubbard-Anderson Hamiltonian

Ĥ = −t
∑
i j,σ

(â†
iσ â jσ + â†

jσ âiσ ) + U
∑

i

n̂i↑n̂i↓ +
∑
i,σ

Vin̂iσ ,

(22)
has been widely used as a model for interacting electrons in
the presence of disorder. The aim of this work is to investigate
the real-space analog of this model described in Eqs. (1)–(4).
One major difference between these two systems is the long-
range character of the Coulomb-like interaction of Eq. (5). On
the other hand, in the Hubbard-Anderson model, electrons are
restricted to interact with each other only when they are on
the same site (short-range interactions). We should mention
that inclusion of long-range interactions in many-body local-
ization lattice models is possible and has been investigated by
some groups recently [68–72].

While many-body localization should happen for both
ground and excited states, this work has considered only the
first ones because of computational restrictions due to the
real-space nature of our system. For the same reason, only
two electron systems have been considered. Yet, this simple
system still carries much valuable information about the in-
terplay of long-range interactions and disordered potentials. In
addition, this system allowed to gauge the performance of lo-
calization indicators usable in real-space models because the
entanglement measures widespread in lattice Hamiltonians
can not be straightforwardly transferred to real space. Namely,
the single-particle occupation entropy and the position-space
information entropy, relying respectively on the one-body
RDM and the electronic density, have been considered. While

it has been observed that the former is a more reliable indi-
cator to study localization transition induced by interaction,
the latter has the practical advantage of being usable for DFT
approximations.

The study of the numerically accurate many-body solutions
of this Hamiltonian allowed to observe some trends about
the interplay of disorder and interactions. We showed that
increasing the disorder strength delays the Mott-like transition
to larger interaction strength as well as making transitions
much steeper. The other point of view, namely, the influence
of interactions on disorder-induced localization has been in-
vestigated as well. In this case, it has been showed that the
disorder-induced localization is happening at larger disorder
strength for large interaction strength. In addition, in this large
interaction regime, another transition has been detected in
which the electrons stay in singly occupied orbital but these
orbitals become localized in space.

The model also allowed us to analyze in depth the per-
formance of different density functional approximations. Our
results show that the exact KS potential needs to have features
very similar to those that have emerged from the study of the
KS potential for molecular systems, in particular peaks and
steps. The failure of (semi)local approximations, and also of
exact exchange, which are known to miss these features, is
in this case particularly spectacular, as it leads to completely
delocalized densities when the exact ones are localized. It
could be seen as an extreme case of the delocalization error
[73]. The SCE functional, although performing qualitatively
much better, has still notable failures because it misses the
kinetic correlation part. This study suggests that this simple
model system of electrons in a box in the presence of disorder
could be used as a severe test for new DFT approximations.
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